Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
myyyy
Xem chi tiết
myyyy
24 tháng 9 2023 lúc 19:23

help

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 9 2017 lúc 8:27

Chọn A.

Ta có:  y ' = 2 x x 2 + 1 - m

 

Hàm số y = ln x 2 + 1 - m x + 1   đồng biến trên khoảng( -∞; +∞). Khi và chỉ khi y’ ≥0 với mọi . ⇔ g ( x ) = 2 x x 2 + 1 ≥ m ,   ∀ x ∈ - ∞ ; + ∞

 

Ta có 

 

Bảng biến thiên:

Dựa vào bảng biến thiên ta có:

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 6 2017 lúc 12:16

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 2 2018 lúc 2:14

Đáp án D

Để hàm số đã cho đồng biến trên khoảng  − ∞ ; + ∞  thì  y ' > 0 ,   ∀ x ∈ ℝ

Xét hàm số  y = x x 2 + 1  có  y ' = 1 x 2 + 1 x 2 + 1 > 0 ,   ∀ x ∈ ℝ => Hàm số y' luôn đồng biến.

Ta có: lim x → − ∞ x x 2 + 1 = − 1

Vậy để hàm số đã cho đồng biến trên khoảng  − ∞ ; + ∞  thì  m ≤ − 1 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 1 2019 lúc 6:24

Đáp án D

y ' = 2 x x 2 + 1 − m = 2 x − m x 2 + 1 x 2 + 1 T H 1 : m = 0 ⇔ 2 x x 2 + 1 > 0 ⇔ x > 0 T H 2 : m ≠ 0  

Hàm số đồng biến trên khoảng 

− ∞ ; + ∞ ⇔ − m x 2 + 2 x − m > 0 ∀ x ∈ ℝ

⇔ − m > 0 Δ ' = 1 − m 2 ≤ 0 ⇔ m < 0 m ≥ 1 m ≤ − 1 ⇔ m ≤ − 1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 5 2018 lúc 11:11

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 3 2018 lúc 16:03

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 3 2019 lúc 8:15

Để hàm số đồng biến trên  - ∞ ; + ∞  khi và chỉ khi 

Chọn C.

Shuu
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 7 2021 lúc 23:16

3.

\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)

Hàm nghịch biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)

\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)

4.

\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)

Hàm đồng biến trên khoảng đã cho khi:

\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)