\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\)và a-b+c=-49
áp dụng cô si ta có:
+)\(\frac{a^5}{b^3}+\frac{a^3}{b}\ge\frac{2a^4}{b^2};\frac{b^5}{c^3}+\frac{b^3}{c}\ge\frac{2b^4}{c^2};\frac{c^5}{a^3}+\frac{c^3}{a}\ge\frac{2c^4}{a^2}\)
\(\Leftrightarrow\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge2\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)-\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)\)
+)\(\frac{a^4}{b^2}+a^2\ge\frac{2a^3}{b};\frac{b^4}{c^2}+b^2\ge\frac{2b^3}{c};\frac{c^4}{a^2}+c^2\ge\frac{2C^3}{a}\)
\(\Leftrightarrow\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\ge2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)-\left(a^2+b^2+c^2\right)\)
+)\(\frac{a^3}{b}+ab\ge2a^2;\frac{b^3}{c}+bc\ge2b^2;\frac{c^3}{a}+ca\ge2c^2\)
\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\left(a^2+b^2+c^2\right)+\left(a^2+b^2+c^2-ab-bc-ca\right)\ge\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\ge\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)+\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}-a^2-b^2-c^2\right)\ge\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)
\(\Leftrightarrow\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)+\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}-\frac{a^3}{b}-\frac{b^3}{c}-\frac{c^3}{a}\right)\ge\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)\)
Cho a, b, c, d dương. CM:
1) \(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
2) \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b+c}{\sqrt[3]{abc}}\)
3) \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{d^2}+\frac{d^2}{a^2}\ge\frac{a+b+c+d}{\sqrt[4]{abcd}}\)
4) \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9;a+b+c\le1\)
Làm tạm một câu rồi đi chơi, lát làm cho.
4)
Áp dụng bất đẳng thức Cauchy-Schwarz :
\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
2/ Cô: \(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a.a.b}{b.b.c}}=3\sqrt[3]{\frac{a^3}{abc}}=\frac{3a}{\sqrt[3]{abc}}\)
Tương tự hai BĐT còn lại và cộng theo vế thu được:
\(3.VT\ge3.VP\Rightarrow VT\ge VP^{\left(Đpcm\right)}\)
Đẳng thức xảy ra khi a = b= c
CMR:
\(\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}\ge\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\)
\(\frac{a}{b^3}+\frac{b}{c^3}+\frac{c}{a^3}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\)
\(\)
vì a+b+c=0 nên a=-(b+c)\Rightarrow $a^2$=$(b+c)^2$
tương tự ta có : $b^2$=$(a+c)^2$
$c^2$=$(a+b)^2$
\Rightarrow $\frac{a^2}{a^2-b^2-c^2}$+$\frac{b^2}{b^2-c^2-a^2}$+$\frac{c^2}{c^2-b^2-a^2}$
=$\frac{a^2}{(b+c)^2-b^2-c^2}$+$\frac{b^2}{(a+c)^2-a^2-c^2}$
+$\frac{c^2}{(a+b)^2-a^2-b^2}$
=$\frac{a^2}{2bc}$+$\frac{b^2}{2ac}$+$\frac{c^2}{2ab}$
=$\frac{a^3+b^3+c^3}{2abc}$
vì a+b+c=0 nên a^3+b^3+c^3=3abc(hằng đẳng thức nâng cao)
\Rightarrow $\frac{a^3+b^3+c^3}{2abc}$=$\frac{3}{2}$
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Ta chứng minh BĐT sau với các số dương:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Áp dụng:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)
Cộng vế với vế:
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
b.
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)
Cộng vế với vế (1); (2) và (3):
\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Rút gọn các biểu thức sau \(\left( {a > 0,b > 0} \right)\):
a) \({a^{\frac{1}{3}}}{a^{\frac{1}{2}}}{a^{\frac{7}{6}}}\);
b) \({a^{\frac{2}{3}}}{a^{\frac{1}{4}}}:{a^{\frac{1}{6}}}\);
c) \(\left( {\frac{3}{2}{a^{ - \frac{3}{2}}}{b^{ - \frac{1}{2}}}} \right)\left( { - \frac{1}{3}{a^{\frac{1}{2}}}{b^{\frac{3}{2}}}} \right)\).
a) \(a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}\cdot a^{\dfrac{7}{6}}=a^{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{7}{6}}=a^2\)
b) \(a^{\dfrac{2}{3}}\cdot a^{\dfrac{1}{4}}:a^{\dfrac{1}{6}}=a^{\dfrac{2}{3}+\dfrac{1}{4}-\dfrac{1}{6}}=a^{\dfrac{3}{4}}\)
c) \(\left(\dfrac{3}{2}a^{-\dfrac{3}{2}}\cdot b^{-\dfrac{1}{2}}\right)\left(-\dfrac{1}{3}a^{\dfrac{1}{2}}b^{\dfrac{2}{3}}\right)=\left(\dfrac{3}{2}\cdot-\dfrac{1}{3}\right)\left(a^{-\dfrac{3}{2}}\cdot a^{\dfrac{1}{2}}\right)\left(b^{-\dfrac{1}{2}}\cdot b^{\dfrac{2}{3}}\right)\)
\(=-\dfrac{1}{2}a^{-1}b^{-\dfrac{1}{3}}\)
Cho a, b, c > 0. CMR:
a, \(\frac{a^3+b^3}{ab}+\frac{b^3+c^3}{bc}+\frac{c^3+a^3}{ca}\ge2\left(a+b+c\right)\)
b, \(\frac{a^2}{b^3}+\frac{b^2}{c^3}+\frac{c^2}{a^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
c, \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\)
Giúp mình với các bạn ơiii
a) Bổ đề: \(x^3+y^3\ge xy\left(x+y\right)\forall x,y>0\)
\(\frac{a^3+b^3}{ab}+\frac{b^3+c^3}{bc}+\frac{c^3+a^3}{ca}\ge\frac{ab\left(a+b\right)}{ab}+\frac{bc\left(b+c\right)}{bc}+\frac{ca\left(c+a\right)}{ca}=2\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
Cảm ơn bạn nhiều nhé Nhật Pháp soi chiếu thế gian. Nếu có thể, mong bạn hãy giúp mình những phần còn lại ^^
c) Áp dụng bất đẳng thức AM-GM:
\(\frac{a^3}{b}+\frac{a^3}{b}+b^2\ge3\sqrt[3]{\frac{a^3}{b}.\frac{a^3}{b}.b^2}=3a^2\);
\(\frac{b^3}{c}+\frac{b^3}{c}+c^2\ge3\sqrt[3]{\frac{b^3}{c}.\frac{b^3}{c}.c^2}=3b^2\);
\(\frac{c^3}{a}+\frac{c^3}{a}+a^2\ge3\sqrt[3]{\frac{c^3}{a}.\frac{c^3}{a}.a^2}=3c^2\)
Cộng theo từng vế ba bất đẳng thức trên ta đươc:
\(2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)+a^2+b^2+c^2\ge3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge a^2+b^2+c^2\)
Dấu "=" xảy ra khi \(a=b=c\)
\(\frac{a^3}{a^2+b^2}=\frac{a\left(a^2+b^2\right)-ab^2}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)(cosi ngược dấu)
Chứng minh tương tự được
\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2};\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)
Cộng các vế của 3 bất đẳng thức
\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge a+b+c-\frac{a+b+c}{2}=\frac{a+b+c}{2}\)
Rút gọn
\(\frac{1}{(a+b)^3}(\frac{1}{a^3}+\frac{1}{b^3})+\frac{3}{(a+b)^4}(\frac{1}{a^2}+\frac{1}{b^2})+ \frac{6}{(a+b)^5}(\frac{1}{a}+\frac{1}{b})\)
\(\dfrac{1}{\left(a+b\right)^3}\left(\dfrac{1}{a^3}+\dfrac{1}{a^3}\right)+\dfrac{3}{\left(a+b\right)^4}+\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)+\dfrac{6}{\left(a+b\right)^5}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(=\dfrac{1}{\left(a+b\right)^3}\cdot\dfrac{b^3+a^3}{a^3b^3}+\dfrac{3}{\left(a+b\right)^4}\cdot\dfrac{b^2+a^2}{a^2b^2}+\dfrac{6}{\left(a+b\right)^5}\cdot\dfrac{b+a}{ab}\)
\(=\dfrac{1}{\left(a+b\right)^3}\cdot\dfrac{\left(b+a\right)\left(a^2-ab+a^2\right)}{a^3b^3}+\dfrac{3\left(b^2+a^2\right)}{a^2b^2\cdot\left(a+b\right)^4}\cdot\dfrac{6}{\left(a+b\right)^4}\cdot\dfrac{1}{ab}\)
\(=\dfrac{1}{\left(a+b\right)^2}\cdot\dfrac{b^2-ab+a^2}{a^3b^3}+\dfrac{3b^2+3a^2}{a^2b^2\cdot\left(a+b\right)^4}+\dfrac{6}{ab\left(a+b\right)^4}\)
\(=\dfrac{b^2-ab+a^2}{a^3b^3\cdot\left(a+b\right)^2}+\dfrac{3b^2+3a^2}{a^2b^2\cdot\left(a+b\right)^4}+\dfrac{6}{ab\cdot\left(a+b\right)^4}\)
\(=\dfrac{\left(a+b\right)^2\cdot\left(b^2-ab+a^2\right)+ab\left(3b^2+3a^2\right)+6a^2b^2}{a^3b^3\cdot\left(a+b\right)^4}\)
\(=\dfrac{\left(a^2+2ab+b^2\right)\left(b^2-ab+a^2\right)+3ab^3+3a^3b+6a^2b^2}{a^3b^3\cdot\left(a+b\right)^4}\)
\(=\dfrac{a^2b^2-a^3b+a^4+2ab^3-2a^2b^2+2a^3b+b^4-ab^3+a^2b^2+3ab^3+3a^2b+6a^2b^2}{a^3b^3\cdot\left(a+b\right)^4}\)
\(=\dfrac{6a^2b^2+4a^3b+a^4+4ab^3+b^4}{a^3b^3\cdot\left(a+b\right)^4}\)