Cho \(b^2=ac\:;\:c^2=bd\) a,b,c,d khác 0
Chứng minh \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
cho b mũ 2=ac chứng minh rằng
a mũ 2 +b mũ 2 phần b mũ 2 + c mũ 2 =ac
\(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a\left(a+c\right)}{c\left(a+c\right)}=\dfrac{a}{c}\)
Ta có \(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(\Rightarrow\left(\dfrac{a}{b}\right)^2=\left(\dfrac{b}{c}\right)^2=\dfrac{a}{b}.\dfrac{b}{c}=\dfrac{a^2}{b^2}=\dfrac{b^2}{c^2}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{a^2}{b^2}=\dfrac{b^2}{c^2}=\dfrac{a^2+b^2}{b^2+c^2}\)
Vậy .....
Cho a,b,c>0;a+b+c=3
CMR:(a^2+bc)/(b^2+ac)+(b+ac)/(c+ab)+(c^2+ac)/(a+ab)>=3
Cho tam giác ABC cân (A<90). Từ B kẻ BM vuông góc vs AC cắt AC tại M. CM \(\text{Cho tam giác ABC cân (A< 90). Từ B kẻ BM vuông góc vs AC cắt AC tại M. CM AM/AC+1=2(AB/AC)^2}\frac{AM}{AC}+1=2\left(\frac{AB}{BC}\right)^2\)
cho a/b=c/d chưng minh rằng a^2+ac / c^2-ac = b^2+bd / d^2-bd
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)
Ta có:\(\frac{a^2+ac}{c^2-ac}=\frac{b^2k^2+bk.dk}{d^2k^2-bk.dk}=\frac{bk^2\left(b+d\right)}{dk^2\left(d-b\right)}=\frac{b\left(b+d\right)}{d\left(d-b\right)}\)(1)
\(\frac{b^2+bd}{d^2-bd}=\frac{b\left(b+d\right)}{d\left(d-b\right)}\)(2)
Từ 1 và 2 =>\(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\)
cho a/b=c/d chưng minh rằng a^2+ac / c^2-ac = b^2+bd / d^2-bd
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)
Ta có: \(\frac{a^2+ac}{c^2-ac}=\frac{b^2.k^2+bk.dk}{d^2.k^2-bk.dk}=\frac{bk^2.\left(b+d\right)}{dk^2.\left(d-b\right)}=\frac{b.\left(b+d\right)}{d.\left(d-b\right)}\) (1)
\(\frac{b^2+bd}{d^2-bd}=\frac{b.\left(b+d\right)}{d.\left(d-b\right)}\) (2)
Từ (1) và (2) => \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\left(đpcm\right).\)
Chúc bạn học tốt!
Cho (O;R) vẽ 2 dây AB và AC sao cho AB=2R , AC= căn 2 (B thuộc cung AC) . Tính số đo cung lớn BC.
Cho (O;R) vẽ 2 dây AB và AC sao cho AB=2R , AC= căn 2 (B thuộc cung AC) . Tính số đo cung lớn BC.
Bài 1:
Cho △ABC , đường thẳng d cắt AB ,AC lần lượt tại B',C' sao cho \(\dfrac{AB'}{AB}\)=\(\dfrac{AC'}{AC}\).Chứng minh:
a) \(\dfrac{AB'}{B'B}\)=\(\dfrac{AC'}{C'C}\)
b) \(\dfrac{BB'}{AB}\)=\(\dfrac{CC'}{AC}\)
Bài 2: Cho △ABC , đường trung tuyến AD.Gị M là một điểm trên cạnh AC sao cho AM=\(\dfrac{1}{2}\)MC.Gọi O là giao điểm của BM và AD.Chứng minh rằng:
a)O là trung điểm của AD.
b) OM=\(\dfrac{1}{4}\)BM
Bài 2:
a: Gọi I là trung điểm của MC
Ta có: \(MI=IC=\dfrac{MC}{2}\)
\(AM=\dfrac{MC}{2}\)
Do đó: AM=MI=IC
=>AM=MI
=>M là trung điểm của AI
Xét ΔBMC có
D,I lần lượt là trung điểm của CB,CM
=>DI là đường trung bình của ΔBMC
=>DI//BM và \(DI=\dfrac{BM}{2}\)
DI//BM
O\(\in\)BM
Do đó: DI//OM
Xét ΔADI có
M là trung điểm của AI
MO//DI
Do đó: O là trung điểm của AD
b: Xét ΔADI có O,M lần lượt là trung điểm của AD,AI
=>OM là đường trung bình của ΔADI
=>\(OM=\dfrac{1}{2}DI=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot BM=\dfrac{1}{4}BM\)
Bài 1:
a: \(\dfrac{AB'}{AB}=\dfrac{AC'}{AC}\)
=>\(\dfrac{AB}{AB'}=\dfrac{AC}{AC'}\)
=>\(\dfrac{AB-AB'}{AB'}=\dfrac{AC-AC'}{AC'}\)
=>\(\dfrac{BB'}{AB'}=\dfrac{CC'}{AC'}\)
=>\(\dfrac{AB'}{BB'}=\dfrac{AC'}{CC'}\)
b: Ta có: \(\dfrac{AB'}{BB'}=\dfrac{AC'}{CC'}\)
=>\(\dfrac{AB'+BB'}{BB'}=\dfrac{AC'+CC'}{CC'}\)
=>\(\dfrac{AB}{BB'}=\dfrac{AC}{CC'}\)
=>\(\dfrac{BB'}{AB}=\dfrac{CC'}{AC}\)
cho tỉ lệ thức a/b=c/d chứng minh rằng a^2+ac/c^2-ac=b^2+bd/d^2-bd
3. Cho tam giác ABC vuông tại A. Theo định lí Pitago ta có:
A. AC mũ 2= AB mũ 2 + BC mũ 2 B. AB mũ 2= AC mũ 2 + BC mũ 2
C. BC mũ 2= AB mũ 2 + AC mũ 2 D. BC mũ 2 = AB mũ 2 - AC mũ 2
3. Cho tam giác ABC vuông tại A. Theo định lí Pitago ta có:
A. AC mũ 2= AB mũ 2 + BC mũ 2 B. AB mũ 2= AC mũ 2 + BC mũ 2
C. BC mũ 2 = AB mũ 2 + AC mũ 2 D. BC mũ 2 = AB mũ 2 - AC mũ 2
Chúc bạn học tốt!