Cho \(y=\frac{x^2+\frac{1}{x^2}}{x^2-\frac{1}{x^2}};\)\(z=\frac{x^4+\frac{1}{x^4}}{x^4-\frac{1}{x^4}}\)và \(x\ne\pm1.\)Hãy tính z theo y.
Cho x,y khác nhau thỏa mãn x+\(\frac{1}{x}\)=y+\(\frac{1}{y}\).Chứng minh rằng:
\(\frac{x}{x^2+1}\)+\(\frac{y}{y^2+1}\)=\(\frac{2\left(x+y\right)}{x^2+y^2+2}\)
cho x,y,z là các số thực dương thỏa mãn\(xy+yz+zx=1\). Chứng minh rằng \(\text{x/căn(1+x^2)+y/căn(1+y^2)+z/căn(1+z^2)+1/x^2+1/y^2+1/z^2>=21/2}\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{21}{2}\)
\(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{21}{2}\)
Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)
Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)
Áp dụng Bất Đẳng Thức Cauchy ta có
\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)
\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)
Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)
\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)
Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)
1/ Cho \(y=\frac{x^2+\frac{1}{x^2}}{x^2-\frac{1}{x^2}}\), \(z=\frac{x^4+\frac{1}{x^4}}{x^4-\frac{1}{x^4}}\) và \(x\ne1,x\ne-1\). Hãy tính z theo y
2/ Cho xy+yz+xz=1 và x,y,z khác 1,-1. Chứng minh rằng \(\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}=\frac{4xyz}{\left(1-x^2\right)\left(1-y^2\right)\left(1-z^2\right)}\)
\(Cho A=\frac{1}{(x+y)^3}(\frac{1}{x^4+y^4})\) ;\(B=\frac{2}{(x+y)^4}(\frac{1}{x^3}-\frac{1}{y^3})\) :C=\(\frac{2}{(x+y)^5}(\frac{1}{x^2}-\frac{1}{y^2})\) Tính A+B+C \)
\(a,\frac{3x^2-6xy+3y^2}{5x^2-5xy+5y^2}:\frac{10x-10y}{x^3+y^3}\)
\(b,(\frac{x+2}{x+1}-\frac{2x}{x-1}).\frac{3x+3}{x}+\frac{4x^2+x+7}{x^2-x}\)
\(c,\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)-\frac{x^2-y^2}{\left(x-y\right)^2}\)
\(d,\frac{\frac{x-y}{x+y}-\frac{x+y}{x-y}}{1-\frac{x^2}{x^2+y^2}}\)
\(e,\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right).\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}+\frac{2x-2}{x^2+2x}\)
a) \(\frac{3x^2-6xy+3y^2}{5x^2-5xy+5y^2}:\frac{10x-10y}{x^3+y^3}\)
\(=\frac{3x^2-6xy+3y^2}{5x^2-5xy+5y^2}.\frac{x^3+y^3}{10x-10y}\)
\(=\frac{3\left(x^2-2xy+y^2\right)}{5\left(x^2-xy+y^2\right)}.\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{10\left(x-y\right)}\)
\(=\frac{3\left(x^2-2xy+y^2\right)}{5}.\frac{x+y}{10\left(x-y\right)}\)
\(=\frac{3\left(x-y\right)^2}{5}.\frac{x+y}{10\left(x-y\right)}\)
\(=\frac{3\left(x-y\right)}{5}.\frac{x+y}{10}\)
\(=\frac{3x^2-3y^2}{50}\)
c) \(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)-\frac{x^2-y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\frac{y-x}{xy}-\frac{\left(x+y\right)\left(x-y\right)}{\left(x-y\right)^2}\)
\(=\frac{2}{y-x}-\frac{x+y}{x-y}\)
\(=\frac{2}{y-x}+\frac{x+y}{y-x}\)
\(=\frac{x+y+2}{y-x}\)
d) \(\frac{\frac{x-y}{x+y}-\frac{x+y}{x-y}}{1-\frac{x^2}{x^2+y^2}}\)
\(=\frac{\frac{x^2-2xy+y^2}{x^2-y^2}-\frac{x^2+2xy+y^2}{x^2-y^2}}{\frac{y^2}{x^2+y^2}}\)
\(=\frac{\frac{2x^2+2y^2}{x^2-y^2}}{\frac{y^2}{x^2+y^2}}\)
\(=\frac{2x^2+2y^2}{x^2-y^2}.\frac{x^2+y^2}{y^2}\)
\(=\frac{2x^4+4x^2y^2+2y^4}{x^2y^2-y^4}\)
Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0.\)CMR biểu thức sau luôn âm với mọi x với x,y,z khác 0
\(A=\left(\frac{x^2+y^2}{x^2y^2}-\frac{1}{z^2}\right)\left(\frac{x^2+z^2}{x^2z^2}-\frac{1}{y^2}\right)\left(\frac{y^2+z^2}{y^2z^2}-\frac{1}{x^2}\right)\)
Thực hiện phép tính :
a)\(\frac{x^2}{\left(x-y\right)^2\left(x+y\right)}-\frac{2xy^2}{x^4-2x^2y^2+y^4}+\frac{y^2}{\left(x^2-y^2\right)\left(x+y\right)}\)
b)\(\frac{1}{x-1}-\frac{1}{x+1}-\frac{2}{x^2+1}-\frac{4}{x^4+1}-\frac{8}{x^{8+1}}-\frac{16}{x^{16}+1}\)
c)\(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)
d)\(\frac{a}{x^2+ax}+\frac{a}{x^2+3ax+2a^2}+\frac{a}{x^2+5ax+6a^2}+....+\frac{a}{x^2+19ax+90a^2}+\frac{1}{x+10a}\)
cho x, y, z >1 thỏa mãn \(x^2+y^2+z^2=6.\) Chứng minh \(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge\frac{3\sqrt{2}}{3}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Cho x , y , z > 0
Chứng minh rằng : \(\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{x}}{z^3+x^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(VT=\Sigma_{cyc}\frac{2\sqrt{x}}{x^3+y^2}\le\Sigma_{cyc}\frac{2\sqrt{x}}{2\sqrt{x^3y^2}}=\Sigma_{cyc}\frac{1}{\sqrt{x^2y^2}}=\Sigma_{cyc}\frac{1}{xy}\)
\(=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\) (áp dụng BĐT quen thuộc \(ab+bc+ca\le a^2+b^2+c^2\))
Đẳng thức xảy ra khi x = y = z = 1
Sửa đề : \(\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+x^2}\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\hept{\begin{cases}x^3+y^2\ge2\sqrt{x^3y^2}=2xy\sqrt{x}\\y^3+z^2\ge2\sqrt{y^3z^2}=2yz\sqrt{y}\\z^3+x^2\ge2\sqrt{z^3x^2}=2xz\sqrt{z}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2xy\sqrt{x}}=\frac{1}{xy}\\\frac{2\sqrt{y}}{y^3+z^2}\le\frac{2\sqrt{y}}{2yz\sqrt{y}}=\frac{1}{yz}\\\frac{2\sqrt{z}}{z^3+x^2}\le\frac{2\sqrt{z}}{2xz\sqrt{z}}=\frac{1}{xz}\end{cases}}\)
\(\Rightarrow VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\left(1\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\hept{\begin{cases}\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2y^2}}=\frac{2}{xy}\\\frac{1}{y^2}+\frac{1}{z^2}\ge2\sqrt{\frac{1}{y^2z^2}}=\frac{2}{yz}\\\frac{1}{z^2}+\frac{1}{x^2}\ge2\sqrt{\frac{1}{x^2z^2}}=\frac{2}{xz}\end{cases}}\)
\(\Rightarrow2\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\ge2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\left(2\right)\)
Từ (1) và (2) :
\(\Rightarrow VT\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+x^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\left(đpcm\right)\)
Chúc bạn học tốt !!!
Cho y=\(\frac{^{x^2}+\frac{1}{x^2}}{x^2-\frac{1}{x^2}}\)và z=\(\frac{^{x^4+\frac{1}{x^4}}}{x^4-\frac{1}{^{x^4}}}\)Cho y=\(\sqrt{2}+\sqrt{3}\)Tính z?
\(\hept{\begin{cases}y=\frac{x^2+\frac{1}{x^2}}{x^2-\frac{1}{x^2}}=\frac{x^4+1}{x^4-1}=a\\z=\frac{x^4+\frac{1}{x^4}}{x^4-\frac{1}{x^4}}=\frac{x^8+1}{x^8-1}\end{cases}}\)
\(\Rightarrow x^4=\frac{y+1}{y-1}\)
Thế vô z được
\(z=\frac{\left(\frac{y+1}{y-1}\right)^2+1}{\left(\frac{y+1}{y-1}\right)-1}=\frac{y^2+1}{2y}\)
Giờ thì thế \(y=\sqrt{2}+\sqrt{3}\)vô đi