\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\);\(\dfrac{y}{5}\)=\(\dfrac{z}{7}\)và 2x+3y-2=186
Bài 1: Tìm x,y,z:
a) \(\dfrac{x}{y}\)=\(\dfrac{10}{9}\); \(\dfrac{y}{z}\)=\(\dfrac{3}{4}\); x-y+z =78
b)\(\dfrac{x}{y}=\dfrac{9}{7}\);\(\dfrac{y}{z}\)=\(\dfrac{7}{3}\); x-y+z =-15
c)\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=\(\dfrac{z}{3}\); x2 +y2+z2=200
a) Ta có: \(\dfrac{x}{y}=\dfrac{10}{9}\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}\)
\(\dfrac{y}{z}=\dfrac{3}{4}\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{9}=\dfrac{z}{12}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{12}=\dfrac{x-y+z}{10-9+12}=\dfrac{78}{13}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.10=60\\y=6.9=54\\z=6.12=72\end{matrix}\right.\)
b)Ta có: \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)
\(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)
c) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{3}\)
\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{9+16+9}=\dfrac{200}{34}=\dfrac{100}{17}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{900}{17}\\y^2=\dfrac{1600}{17}\\z^2=\dfrac{900}{17}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{30\sqrt{17}}{17}\\y=\pm\dfrac{40\sqrt{17}}{17}\\z=\pm\dfrac{30\sqrt{17}}{17}\end{matrix}\right.\)
Vậy\(\left(x;y;z\right)\in\left\{\left(\dfrac{30\sqrt{17}}{17};\dfrac{40\sqrt{17}}{17};\dfrac{30\sqrt{17}}{17}\right),\left(-\dfrac{30\sqrt{17}}{17};-\dfrac{40\sqrt{17}}{17};-\dfrac{30\sqrt{17}}{17}\right)\right\}\)
bài 3: Tìm y
a) \(\dfrac{1}{2}\) : y x \(\dfrac{3}{5}=\dfrac{4}{3}+\dfrac{3}{4}\) b) \(\dfrac{4}{3}-\dfrac{1}{2}\) x y \(=1\) c) \(\dfrac{1}{4}+y\) : \(\dfrac{1}{3}=\dfrac{5}{6}\)
a) \(\dfrac{1}{2}:y\times\dfrac{3}{5}=\dfrac{4}{3}+\dfrac{3}{4}\)
\(\dfrac{1}{2}:y\times\dfrac{3}{5}=\dfrac{25}{12}\)
\(\dfrac{1}{2}:y=\dfrac{25}{12}:\dfrac{3}{5}\)
\(\dfrac{1}{2}:y=\dfrac{125}{36}\)
\(y=\dfrac{1}{2}:\dfrac{125}{36}\)
\(y=\dfrac{18}{125}\)
b) \(\dfrac{4}{3}-\dfrac{1}{2}\times y=1\)
\(\dfrac{1}{2}\times y=\dfrac{4}{3}-1\)
\(\dfrac{1}{2}\times y=\dfrac{1}{3}\)
\(y=\dfrac{1}{3}:\dfrac{1}{2}\)
\(y=\dfrac{2}{3}\)
c) \(\dfrac{1}{4}+y:\dfrac{1}{3}=\dfrac{5}{6}\)
\(y:\dfrac{1}{3}=\dfrac{5}{6}-\dfrac{1}{4}\)
\(y:\dfrac{1}{3}=\dfrac{7}{12}\)
\(y=\dfrac{7}{12}\cdot\dfrac{1}{3}\)
\(y=\dfrac{7}{36}\)
Tìm x,y,z biết:
a, x : y : z = 10 : 3 : 4 và x + 2y - 3z = -20
b, \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) và \(\dfrac{y}{5}\) = \(\dfrac{z}{4}\) và x - y + z = -49
c, \(\dfrac{x}{2}\)= \(\dfrac{y}{3}\) =\(\dfrac{z}{4}\) và xy + \(z^2\)= 88
d, \(\dfrac{x}{5}\)= \(\dfrac{y}{7}\) = \(\dfrac{z}{3}\) và \(x^2\) + \(y^2\) + \(z^2\) = 415
Giải hộ mk nha
Tìm x, y, z, t ∈ Z biết:
a, \(\dfrac{5}{x}=\dfrac{-10}{12}\) b, \(\dfrac{4}{-6}=\dfrac{x+3}{9}\) c, \(\dfrac{x-1}{25}=\dfrac{4}{x-1}\) d, \(\dfrac{x+1}{y}=\dfrac{-3}{5}\)
e, \(\dfrac{-12}{6}=\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{Z}{-17}=\dfrac{-t}{-9}\)
h, \(\dfrac{-24}{-6}=\dfrac{x}{3}=\dfrac{4}{y^2}=\dfrac{Z^3}{-2}\)
a) \(\dfrac{5}{x}=\dfrac{-10}{12}.\Rightarrow x=-6.\)
b) \(\dfrac{4}{-6}=\dfrac{x+3}{9}.\Rightarrow x+3=-6.\Leftrightarrow x=-9.\)
c) \(\dfrac{x-1}{25}=\dfrac{4}{x-1}.\left(đk:x\ne1\right).\Leftrightarrow\dfrac{x-1}{25}-\dfrac{4}{x-1}=0.\)
\(\Leftrightarrow\dfrac{x^2-2x+1-100}{25\left(x-1\right)}=0.\Leftrightarrow x^2-2x-99=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=11.\\x=-9.\end{matrix}\right.\) \(\left(TM\right).\)
Tìm x,y,z biết:
a. \(x=\dfrac{y}{6}=\dfrac{z}{3}và2x-3x-4z=24\)
\(b.6x=10y=15z\) và \(x+y-z=90\)
\(c.\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}và5z-3x-4y=50\)
\(d.\dfrac{x}{4}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{3}vàx-y+100=z\)
a: 2x-3y-4z=24
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y-4z}{2\cdot1-3\cdot6-4\cdot3}=\dfrac{24}{-28}=\dfrac{-6}{7}\)
=>x=-6/7; y=-36/7; z=-18/7
b: 6x=10y=15z
=>x/10=y/6=z/4=k
=>x=10k; y=6k; z=4k
x+y-z=90
=>10k+6k-4k=90
=>12k=90
=>k=7,5
=>x=75; y=45; z=30
d: x/4=y/3
=>x/20=y/15
y/5=z/3
=>y/15=z/9
=>x/20=y/15=z/9
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{9}=\dfrac{x-y-z}{20-15-9}=\dfrac{-100}{-4}=25\)
=>x=500; y=375; z=225
Tìm y
a) 3 \(\dfrac{1}{5}\) : 2\(\dfrac{1}{3}\): y = \(\dfrac{12}{7}\)
b) 3 : y x 3 \(\dfrac{1}{2}\)= \(\dfrac{2}{3}x\dfrac{3}{4}\)
c) \(3\dfrac{2}{3}-y+1\dfrac{3}{4}=2\)
mình ko chép đề bài nha
a) \(\dfrac{16}{5}\): \(\dfrac{7}{3}\) : y =\(\dfrac{12}{7}\)
\(\dfrac{48}{35}\): y = \(\dfrac{12}{7}\)
y = \(\dfrac{48}{35}\): \(\dfrac{12}{7}\)
y = \(\dfrac{4}{5}\)
b) 3 : y x \(\dfrac{7}{2}\)= \(\dfrac{1}{2}\)
3 : y = \(\dfrac{1}{2}:\dfrac{7}{2}\)
3 : y = \(\dfrac{1}{7}\)
y = 3 : \(\dfrac{1}{7}\)
y = 21
Bài 2: (đề 2) Tìm y
a) \(2\dfrac{2}{5}-y:2\dfrac{3}{4}=1\dfrac{1}{2}\) b) \(1\dfrac{1}{4}+2\dfrac{1}{5}\) x \(y=2\dfrac{3}{5}\)
c) \(2\dfrac{4}{5}-2\dfrac{1}{4}:y=\dfrac{3}{4}\) c) \(x:3\dfrac{1}{3}=2\dfrac{2}{5}+\dfrac{7}{10}\)
\(2\dfrac{2}{5}-y:2\dfrac{3}{4}=1\dfrac{1}{2}\\ \dfrac{12}{5}-y:\dfrac{11}{4}=\dfrac{3}{2}\\ y:\dfrac{11}{4}=\dfrac{12}{5}-\dfrac{3}{2}\\ y:\dfrac{11}{4}=\dfrac{9}{10}\\ y=\dfrac{9}{10}\times\dfrac{11}{4}=\dfrac{99}{40}\\ b,1\dfrac{1}{4}+2\dfrac{1}{5}\times y=2\dfrac{3}{5}\\ \dfrac{5}{4}+\dfrac{11}{5}\times y=\dfrac{13}{5}\\ \dfrac{11}{5}\times y=\dfrac{13}{5}-\dfrac{5}{4}\\ \dfrac{11}{5}\times y=\dfrac{27}{20}\\ y=\dfrac{27}{20}:\dfrac{11}{5}=\dfrac{27}{44}\)
\(c,2\dfrac{4}{5}-2\dfrac{1}{4}:y=\dfrac{3}{4}\\ \dfrac{14}{5}-\dfrac{9}{4}:y=\dfrac{3}{4}\\ \dfrac{9}{4}:y=\dfrac{14}{5}-\dfrac{3}{4}\\ \dfrac{9}{4}:y=\dfrac{41}{20}\\ y=\dfrac{9}{4}:\dfrac{41}{20}=\dfrac{45}{41}\\ c2,x:3\dfrac{1}{3}=2\dfrac{2}{5}+\dfrac{7}{10}\\ x:\dfrac{10}{3}=\dfrac{12}{5}+\dfrac{7}{10}\\ x:\dfrac{10}{3}=\dfrac{31}{10}\\ x=\dfrac{31}{10}\times\dfrac{10}{3}=\dfrac{31}{3}\)
a) \(...\Rightarrow\dfrac{12}{5}-y:\dfrac{11}{4}=\dfrac{3}{2}\)
\(\Rightarrow y:\dfrac{11}{4}=\dfrac{12}{5}-\dfrac{3}{2}\Rightarrow y:\dfrac{11}{4}=\dfrac{24}{10}-\dfrac{15}{10}\)
\(\Rightarrow y:\dfrac{11}{4}=\dfrac{9}{10}\Rightarrow y=\dfrac{9}{10}x\dfrac{11}{4}=\dfrac{99}{40}\)
b) \(...\Rightarrow\dfrac{5}{4}+\dfrac{11}{5}xy=\dfrac{13}{5}\Rightarrow\dfrac{11}{5}xy=\dfrac{13}{5}-\dfrac{5}{4}\)
\(\Rightarrow\dfrac{11}{5}xy=\dfrac{52}{20}-\dfrac{25}{20}\Rightarrow\dfrac{11}{5}xy=\dfrac{27}{20}\)
\(\Rightarrow y=\dfrac{27}{20}:\dfrac{11}{5}=\dfrac{27}{20}x\dfrac{5}{11}=\dfrac{27}{44}\)
c) \(...\Rightarrow\dfrac{14}{5}-\dfrac{9}{4}:y=\dfrac{3}{4}\Rightarrow\dfrac{9}{4}:y=\dfrac{14}{5}-\dfrac{3}{4}\)
\(\Rightarrow\dfrac{9}{4}:y=\dfrac{56}{20}-\dfrac{15}{20}\Rightarrow\dfrac{9}{4}:y=\dfrac{39}{20}\)
\(\Rightarrow y=\dfrac{9}{4}:\dfrac{39}{20}\Rightarrow y=\dfrac{9}{4}x\dfrac{20}{39}=\dfrac{15}{13}\)
d) \(...\Rightarrow x:\dfrac{10}{3}=\dfrac{12}{5}+\dfrac{7}{10}\Rightarrow x:\dfrac{10}{3}=\dfrac{24}{10}+\dfrac{7}{10}\)
\(\Rightarrow x:\dfrac{10}{3}=\dfrac{31}{10}\Rightarrow x=\dfrac{31}{10}x\dfrac{10}{3}=\dfrac{31}{3}\)
a )\(\dfrac{x}{3}\) = \(\dfrac{y}{5}\) = \(\dfrac{z}{7}\) và 3x - 2z =15
b)\(\dfrac{x}{5}\) = \(\dfrac{4}{3}\) = \(\dfrac{z}{2}\) và 2x -3y =100
c)\(\dfrac{x}{-3}\) = \(\dfrac{4}{-5}\) \(\dfrac{z}{-4}\) và 3z -2x =36
d) \(\dfrac{x}{2}\) = y = \(^{\dfrac{z}{3}}\) và 3x -2 + 4z =16
a,Áp sụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{3x-2z}{9-14}=\dfrac{15}{-5}=-3\\\Rightarrow x=-3.3=-9\\ \Rightarrow y=-3.5=-15\\ \Rightarrow z=-3.7=-21 \)
a) Ta có: \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{3x}{9}=\dfrac{2z}{14}=\dfrac{3x-2z}{9-14}=\dfrac{15}{-5}=-3\) (Vì 3x-2z=15)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=-3\\\dfrac{y}{5}=-3\\\dfrac{z}{7}=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-9\\y=-15\\z=-21\end{matrix}\right.\)
Vậy ...
b) Ta có: \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{2x}{10}=\dfrac{3y}{9}=\dfrac{2x-3y}{10-9}=\dfrac{100}{1}=100\) (Vì 2x-3y=100)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=100\\\dfrac{y}{3}=100\\\dfrac{z}{2}=100\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=500\\y=300\\z=200\end{matrix}\right.\)
Vậy ...
c) Ta có: \(\dfrac{x}{-3}=\dfrac{y}{-5}=\dfrac{z}{-4}=\dfrac{3z}{-12}=\dfrac{2x}{-6}=\dfrac{3z-2x}{\left(-12\right)-\left(-6\right)}=\dfrac{36}{-18}=-2\) (Vì 3z-2x=36)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{-3}=-2\\\dfrac{y}{-5}=-2\\\dfrac{z}{-4}=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=6\\y=10\\z=8\end{matrix}\right.\)
Vậy ...
d: x/2=y/1=z/3
mà 3x+4z=16+2=18
nên Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{1}=\dfrac{z}{3}=\dfrac{3x+4z}{3\cdot2+4\cdot3}=\dfrac{18}{18}=1\)
=>x=2; y=1; z=3
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{3x-2z}{3\cdot3-2\cdot7}=\dfrac{15}{-5}=-3\)
=>x=-9; y=-15; z=-21
b: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{2x-3y}{2\cdot5-3\cdot3}=\dfrac{100}{1}=100\)
=>x=500; y=300; z=200
c: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{4}=\dfrac{3z-2x}{3\cdot4-2\cdot3}=\dfrac{36}{6}=6\)
=>x=18; y=30; z=24
Quy đồng mẫu các phân thức sau:
a)\(\dfrac{x}{x-y}\); \(\dfrac{y}{\left(x-y\right)^2}\) ; \(\dfrac{1}{\left(y-x\right)^3}\)
b) \(\dfrac{1}{2x+4};\dfrac{x}{2x-4};\dfrac{3}{4-x^2}\)
Quy đồng mẫu các phân thức sau:
a)\(\dfrac{x}{x-y};\dfrac{y}{\left(x-y\right)^2};\dfrac{1}{\left(y-x\right)^3}\)
b) \(\dfrac{1}{2x+4};\dfrac{x}{2x-4};\dfrac{3}{4-x^2}\)