Cho pt(P):y=x2;(d):y=x+m
tìm m để (P) và(d) cắt nhau tại 2 điểm phân biệt A;B sao cho tam giác AOB là tam giác vuông
gọi x1 ,x2 là 2 nghiệm của PT hãy tìm GTNN của A= -x2x22 -3(x12+x22)+4
cho parabol (P) có pt : y= -x^2 và đường thẳng (d) có pt : y= -mx+m-1 . tìm m để (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ là x1,x2 thỏa mãn x1^2 + x2^2 =17 ?
PTHĐGĐ là:
\(-x^2=-mx+m-1\)
\(\Leftrightarrow x^2-mx+m-1=0\)
\(\Delta=\left(-m\right)^2-4\cdot1\left(m-1\right)\)
\(=m^2-4m+4\)
\(=\left(m-2\right)^2\ge0\forall m\)
Do đó: Phương trình luôn có nghiệm với mọi m
Áp dụng hệ thức Vi-et, ta có:,
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=17\)
\(\Leftrightarrow m^2-2\left(m-1\right)-17=0\)
\(\Leftrightarrow\left(m-5\right)\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-3\end{matrix}\right.\)
1/ vẽ ĐTHS y=1/4x^2
2/ vẽ ĐTHS y=-4x^2
3/ giải pt
X^2 +15x - 16= 0
X^2 +17x + 16= 0
X^2 - 5x + 1= 0
4x^2 + 4x + 1 = 0
4/ ko giải pt hãy tính x1 + x2 ; x1 nhân x2 ; x1^2 + x2^2 với x1,x2 là 2 nghiệm của pt ( nếu có) của các pt sau
X2 - 5x + 1= 0
2x^2 - 3x - 1= 0
5/ cho pt x^2 + 4x + m= 0 ,m là tham số
Tìm để để pt trên có 2 nghiệm cùng dấu
Tìm m để pt trên có 2 nghiệm trái dấu
1.Số nghiệm của pt x2 -2x-8=4 căn (4-x)(x+2)
2.Cho hình vuông ABCD Tính (vectơ AB,BD)
3. Tìm m để hệ pt y+x2=x(1) 2x+y-m=0 Có nghiệm.
Cho pt: x^2-2x-2=0 có hai nghiệm x1,x2. Ko giải pt hãy tính giá trị của biểu thức A=x1^3+x2^3.
Giúp mik vs ạ
\(pt:x^2-2x-2=0\)
Theo hệ thức Vi-et:
\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-2\end{matrix}\right.\)
\(A=x_1^3+x_2^3=\left(x_1+x_2\right)^2-3x_1x_2\left(x_1+x_2\right)=2^2-3.\left(-2\right).2=16\)
M.n giải hộ em bài này với ạ.
Cho phương trình x^2 -4x+m-1=0
a) tìm m để pt có 2nghiệm x1,x2 sao cho:
X1^3+x2^3=20x1×x2
b) tìm m để pt có 2 nghiệm x1 và x2 sao cho:
P=x1(x2-2)+x2(x1-2) đạt giá trị lớn nhất
Hết.
a: \(\text{Δ}=\left(-4\right)^2-4\left(m-1\right)=16-4m+4=-4m+20\)
Để phương trình có hai nghiệm thì -4m+20>=0
=>m<=5
Ta có: \(x_1^3+x_2^3=20x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=20x_1x_2\)
\(\Leftrightarrow4^3-3\cdot4\cdot\left(m-1\right)=20\left(m-1\right)\)
=>64-12(m-1)-20(m-1)=0
=>32(m-1)=64
=>m-1=2
=>m=3
b: \(P=x_1x_2-2x_1+x_2x_1-2x_2=2x_1x_2-2\left(x_1+x_2\right)\)
\(=2\left(m-1\right)-2\cdot4=2m-10\)
Biểu thức này ko có giá trị lớn nhất nha bạn
cho pt: (m-2)X^2+2(m-4)X+m-4=0 (1)
giải sử pt có 2 nghiệm x1,x2. hãy tìm 1 hệ thức liên hệ độc lấp x1,x2 với m
Theo hệ thức Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-2\left(m-4\right)}{m-2}\\x_1x_2=\frac{m-4}{m-2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\frac{-2\left(m-4\right)}{m-2}\\2x_1x_2=\frac{2\left(m-4\right)}{m-2}\end{matrix}\right.\)
\(\Rightarrow x_1+x_2+2x_1x_2=0\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
Cho hàm số y=(x-1)(x2+mx+m)
a. Với m=2, tính y', giải pt
b.Tìm m để tiếp tuyến tại điểm có hoành độ x=-1 song song với đường thẳng y=-2x-3
c. tìm m để pt y=0 có 3 nghiệm phân biệt x1,x2,x3 thỏa mãn x12 + x22 +x32 <4
d. tìm m để pt y=0 có 3 nghiệm phân biệt trong đó có 1 nghiệm lớn hơn 2
cho pt x2+2x+m-1=0
tìm m để pt có 2 nghiệm x1,x2 thỏa mãn 3x1+2x2=1
lập pt ẩn y thỏa mãn y1=x1+\(\frac{1}{x^{_2}}\) ,y2=x2+\(\frac{1}{x_1}\)với x1,x2 là nghiệm của pt nói trên
\(\Delta'=2-m\ge0\Rightarrow m\le2\)
Kết hợp Viet và điều kiện đề bài ta có hệ: \(\left\{{}\begin{matrix}x_1+x_2=-2\\3x_1+2x_2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=5\\x_2=-7\end{matrix}\right.\)
Mặt khác ta có \(x_1x_2=m-1\Rightarrow m-1=-35\Rightarrow m=-34\)
\(\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{1}{x_1}+\frac{1}{x_2}\\y_1y_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{x_1+x_2}{x_1x_2}\\y_1y_2=x_1x_2+\frac{1}{x_1x_2}+2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-2-\frac{2}{m-1}=\frac{-2m}{m-1}\\y_1y_2=m-1+\frac{1}{m-1}+2=\frac{m^2}{m-1}\end{matrix}\right.\) (\(m\ne1\))
Theo Viet đảo, \(y_1;y_2\) là nghiệm của:
\(y^2+\frac{2m}{m-1}y+\frac{m^2}{m-1}\Leftrightarrow\left(m-1\right)y^2+2my+m^2=0\) \(\left(m\ne1\right)\)
cho pt 3x^2-5x-4=0
không giải pt hãy tính giá trị của biểu thức A=x1^3x2+x1x2^3
với x1, x2 là nghiệm của pt
Do \(\Delta=5^2+4\cdot3\cdot4=25+48=73>0\) nên PT có 2 nghiệm phân biệt.
Khi đó: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-b}{a}=\frac{-\left(-5\right)}{3}=\frac{5}{3}\\x_1x_2=\frac{c}{a}=\frac{-4}{3}\end{matrix}\right.\)
Từ đây, ta suy ra:
\(A=x_1^3x_2+x_1x_2^3\\ =x_1x_2\left(x_1^2+x^2_2\right)\\ =x_1x_2\left(x_1^2+2x_1x_2+x^2_2-2x_1x_2\right)\\ =x_1x_2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]\\ =\frac{-4}{3}\cdot\left[\left(\frac{5}{3}\right)^2-\frac{-4\cdot2}{3}\right]\\ =\frac{-4}{3}\cdot\frac{25-\left(-8\cdot3\right)}{9}\\ =\frac{-4}{3}\cdot\frac{25+24}{9}\\ =\frac{-4}{3}\cdot\frac{49}{9}=\frac{-196}{27}\)
Chúc bạn học tốt nha.
Ta có:
A = x1x2(x12 + x22) = x1x2[(x1 + x2)2 - 2x1x2]
Ta có: \(\Delta=\left(-5\right)^2-4.3.\left(-4\right)=25+48>0\)
Áp dụng định lý Vi-ét với phương trình 3x2 - 5x - 4 ta có:
x1 + x2 = \(\frac{-\left(-5\right)}{3}=\frac{5}{3}\)
x1x2 = \(\frac{-4}{3}\)
Thay vào A ta được:
A = \(\frac{-4}{3}\left[\left(\frac{5}{3}\right)^2-2.\frac{-4}{3}\right]=\frac{-4}{3}.\left(\frac{25}{9}+\frac{8}{3}\right)=\frac{-4}{3}.\frac{49}{3}=\frac{-196}{3}\)
(P/s: CÓ thể SAI)