Tìm tập xác định của hàm số \(y = \frac{1}{{\sqrt {x - 2} }}\) là:
A. \(D = \left[ {2; + \infty } \right).\)
B. \(D = \left( {2; + \infty } \right).\)
C. \(D = \mathbb{R}\backslash \left\{ 2 \right\}.\)
D. \(D = \mathbb{R}.\)
Tìm tập xác định của hàm số \(y = \frac{1}{{\sqrt {x - 2} }}\) là:
A. \(D = \left[ {2; + \infty } \right).\)
B. \(D = \left( {2; + \infty } \right).\)
C. \(D = \mathbb{R}\backslash \left\{ 2 \right\}.\)
D. \(D = \mathbb{R}.\)
Parabol \(y = - {x^2} + 2x + 3\) có đỉnh là:
A. \(I( - 1;0).\)
B. \(I(3;0).\)
C. \(I\left( {0;3} \right).\)
D. \(I(1;4).\)
Thảo luận (1)Hướng dẫn giảiParabol \(y = - {x^2} + 2x + 3\) có \(a = - 1;\,\,b = 2;\,\,c = 3.\)
Ta có: \(\Delta = {b^2} - 4ac = {2^2} - 4\left( { - 1} \right).3 = 4 + 12 = 16.\)
Tọa độ đỉnh \(I\) là: \(I\left( {1;4} \right).\)
Chọn D.
(Trả lời bởi Hà Quang Minh)
Hàm số \(y = {x^2} - 5x + 4\)
A. Đồng biến trên khoảng \((1; + \infty ).\)
B. Đồng biến trên khoảng \(( - \infty ;4).\)
C. Nghịch biến trên khoảng \(( - \infty ;1).\)
D. Nghịch biến trên khoảng \((1;4).\)
Thảo luận (1)Hướng dẫn giảiTrục đối xứng của hàm số là: \(x = \frac{5}{2}.\)
Vì \(a = 1 > 0\) nên hàm số đồng biến trên khoảng \(\left( {\frac{5}{2}; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ;\frac{5}{2}} \right).\)
Chọn C.
(Trả lời bởi Hà Quang Minh)
Bất phương trình \({x^2} - 2mx + 4 > 0\) nghiệm đúng với mọi \(x \in \mathbb{R}\) khi
A. \(m = - 1.\)
B. \(m = - 2.\)
C. \(m = 2.\)
D. \(m > 2.\)
Thảo luận (1)Hướng dẫn giảiĐể \({x^2} - 2mx + 4 > 0\) nghiệm đúng với mọi \(x \in \mathbb{R}\)
\(\begin{array}{l} \Leftrightarrow \,\,\Delta ' < 0\\ \Leftrightarrow \,\,{\left( { - m} \right)^2} - 4 < 0\\ \Leftrightarrow \,\,{m^2} - 4 < 0\end{array}\)
Ta có \(f\left( m \right) = {m^2} - 4\) có hai nghiệm phân biệt \({m_1} = - 2\) và \({m_2} = 2.\)
Mặt khác: \(a = 1 > 0\) nên ta có bảng xét dấu sau:
Vậy tập nghiệm của bất phương trình là: \(S = \left( { - 2;2} \right).\)
Chọn A.
(Trả lời bởi Hà Quang Minh)
Tập nghiệm của phương trình \(\sqrt {2{x^2} - 3} = x - 1\) là:
A. \(\left\{ { - 1 - \sqrt 5 ; - 1 + \sqrt 5 } \right\}.\)
B. \(\left\{ { - 1 - \sqrt 5 } \right\}.\)
C. \(\left\{ { - 1 + \sqrt 5 } \right\}.\)
D. \(\emptyset .\)
Thảo luận (1)Hướng dẫn giảiĐK: \(x - 1 \ge 0\,\, \Leftrightarrow \,\,x \ge 1\)
\( \Rightarrow \) TXĐ của phương trình là: \(D = \left[ {1; + \infty } \right)\)
Giải phương trình: \(\sqrt {2{x^2} - 3} = x - 1\)
\(\begin{array}{l} \Leftrightarrow \,\,{\left( {\sqrt {2{x^2} - 3} } \right)^2} = {\left( {x - 1} \right)^2}\\ \Leftrightarrow \,\,2{x^2} - 3 = {x^2} - 2x + 1\\ \Leftrightarrow \,\,{x^2} + 2x - 4 = 0\\ \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x = - 1 + \sqrt 5 }\\{x = - 1 - \sqrt 5 }\end{array}} \right.\end{array}\)
Ta thấy \(x = - 1 + \sqrt 5 \) thỏa mãn.
Vậy tập nghiệm của phương trình là: \(S = \left\{ { - 1 + \sqrt 5 } \right\}\)
Chọn C.
(Trả lời bởi Hà Quang Minh)
Tìm tập xác định của các hàm số sau:
a) \(y = \sqrt {2x - 1} + \sqrt {5 - x} \)
b) \(y = \frac{1}{{\sqrt {x - 1} }}.\)
Thảo luận (1)Hướng dẫn giảia) Tập xác đinh của hàm số \(y = \sqrt {2x - 1} + \sqrt {5 - x} \) là:
\(\left\{ {\begin{array}{*{20}{c}}{2x - 1 \ge 0}\\{5 - x \ge 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x \ge \frac{1}{2}}\\{x \le 5}\end{array}} \right.} \right.\,\, \Leftrightarrow \,\,\frac{1}{2} \le x \le 5\)
Vậy tập xác định của hàm số là: \(D = \left[ {\frac{1}{2};5} \right].\)
b) Tập xác định của hàm số \(y = \frac{1}{{\sqrt {x - 1} }}\) là: \(x - 1 > 0\,\, \Leftrightarrow \,\,x > 1.\)
Vậy tập xác định của hàm số là: \(D = \left( {1; + \infty } \right).\)
(Trả lời bởi Hà Quang Minh)
Với mỗi hàm số dưới đây, hãy vẽ đồ thị, tập giá trị, khoảng đồng biến, khoảng nghịch biến của nó:
a) \(y = - {x^2} + 6x - 9\)
b) \(y = - {x^2} - 4x + 1\)
c) \(y = {x^2} + 4x\)
d) \(y = 2{x^2} + 2x + 1.\)
Thảo luận (1)Hướng dẫn giảia) \(y = - {x^2} + 6x - 9\)
Ta có: \(a = - 1\) nên parabol quay bề lõm xuống dưới.
Đỉnh \(I\left( {3;0} \right).\) Trục đối xứng \(x = 3.\) Giao điểm của đồ thị với trục \(Oy\) là: \(A\left( {0; - 9} \right).\) Parabol cắt trục hoành tại \(x = 3.\)
Tập giá trị của hàm số là: \(\left( { - \infty ;0} \right].\)
Từ đồ thị ta thấy: Hàm số \(y = - {x^2} + 6x - 9\) đồng biến trên khoảng \(\left( { - \infty ;3} \right)\) và nghịch biến trên khoảng \(\left( {3; + \infty } \right).\)
b) \(y = - {x^2} - 4x + 1\)
Ta có: \(a = - 1\) nên parabol quay bề lõm xuống dưới.
Đỉnh \(I\left( { - 2;5} \right).\) Trục đối xứng \(x = - 2.\) Giao điểm của hàm số với trục \(Oy\) là: \(\left( {0;1} \right).\) Giao điểm của hàm số với trục \(Ox\) là: \(x = - 2 + \sqrt 5 \) và \(x = - 2 - \sqrt 5 .\)
Tập giá trị của hàm số là: \(\left( { - \infty ;5} \right].\)
Từ đồ thị ta thấy: Hàm số \(y = - {x^2} - 4x + 1\) đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\) và nghịch biến trên khoảng \(\left( { - 2; + \infty } \right).\)
c) \(y = {x^2} + 4x\)
Ta có: \(a = 1 > 0\) nên parabol quay bề lõm lên trên.
Đỉnh \(I\left( { - 2; - 4} \right).\) Trục đối xứng \(x = - 2.\) Giao điểm của hàm số với trục \(Oy\) là: \(\left( {0;0} \right).\) Giao điểm của hàm số với trục \(Ox\) là: \(x = 0\) và \(x = - 4.\)
Tập giá trị của hàm số là: \(\left[ { - 4; + \infty } \right).\)
Từ đồ thị ta thấy: Hàm số \(y = {x^2} + 4x\) đồng biến trên khoảng \(\left( { - 2; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right).\)
d) \(y = 2{x^2} + 2x + 1\)
Ta có: \(a = 2 > 0\) nên parabol quay bề lõm lên trên.
Đỉnh \(I\left( { - \frac{1}{2};\frac{1}{2}} \right).\) Trục đối xứng \(x = - \frac{1}{2}.\) giao điểm của hàm số với trục \(Oy\) là: \(\left( {0;1} \right).\) Đồ thị hàm số không có giao điểm với trục \(Ox.\) Lấy điểm \(\left( {1;5} \right)\) thuộc đồ thị hàm số, điểm đối xứng với điểm đó qua trục đối xứng \(x = - \frac{1}{2}\) là: \(\left( { - 2;5} \right).\)
Tập giá trị của hàm số là: \(\left[ {\frac{1}{2}; + \infty } \right).\)
Từ đồ thị ta thấy: Hàm số \(y = 2{x^2} + 2x + 1\) đồng biến trên khoảng \(\left( { - \frac{1}{2}; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - \frac{1}{2}} \right).\)
(Trả lời bởi Hà Quang Minh)
Xác định parabol \(\left( P \right):y = a{x^2} + bx + 3\) trong mỗi trường hợp sau:
a) \(\left( P \right)\) đi qua hai điểm \(A(1;1)\) và \(B( - 1;0)\).
b) \(\left( P \right)\) đi qua điểm \(M(1;2)\) và nhận đường thẳng \(x = 1\) làm trục đối xứng.
c) \(\left( P \right)\) có đỉnh là \(I(1;4).\)
Thảo luận (1)Hướng dẫn giảia) Theo giả thiết, hai điểm \(A(1;1)\) và \(B( - 1;0)\) thuộc parabol \(\left( P \right):y = a{x^2} + bx + 3\) nên ta có: \(\left\{ {\begin{array}{*{20}{c}}{a + b + 3 = 1}\\{a - b + 3 = 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = \frac{{ - 5}}{2}}\\{b = \frac{1}{2}}\end{array}} \right.} \right.\)
Vậy hàm số cần tìm là: \(y = - \frac{5}{2}{x^2} + \frac{1}{2}x + 3.\)
b) Parabol nhận \(x = 1\) làm trục đối xứng nên \( - \frac{b}{{2a}} = 1\,\, \Leftrightarrow \,\,b = - 2a.\)
Điểm \(M(1;2)\) thuộc parabol nên \(a + b + 3 = 2\,\, \Leftrightarrow \,\,a + b = - 1.\)
Do đó, ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{b = - 2a}\\{a + b = - 1}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = - 2}\end{array}} \right.} \right.\)
Vậy hàm số cần tìm là: \(y = {x^2} - 2x + 3\)
c) Parabol có đỉnh \(I(1;4)\) nên ta có:
\(\left\{ {\begin{array}{*{20}{c}}{ - \frac{b}{{2a}} = 1}\\{a + b + 3 = 4}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{b = - 2a}\\{a + b = 1}\end{array}\,\, \Leftrightarrow \,\,} \right.} \right.\left\{ {\begin{array}{*{20}{c}}{a = - 1}\\{b = 2}\end{array}} \right.\)
Vậy hàm số cần tìm là: \(y = - {x^2} + 2x + 3.\)
(Trả lời bởi Hà Quang Minh)
Giải các bất phương trình sau:
a) \(2{x^2} - 3x + 1 > 0\)
b) \({x^2} + 5x + 4 < 0\)
c) \( - 3{x^2} + 12x - 12 \ge 0\)
d) \(2{x^2} + 2x + 1 < 0.\)
Thảo luận (1)Hướng dẫn giảia) \(2{x^2} - 3x + 1 > 0\)
Tam thức \(f\left( x \right) = 2{x^2} - 3x + 1\) có \(a + b + c = 2 - 3 + 1 = 0\) nên hai nghiệm phân biệt \({x_1} = 1\) và \({x_2} = \frac{1}{2}.\)
Mặt khác \(a = 2 > 0,\) do đó ta có bảng xét dấu sau:
Tập nghiệm của bất phương trình là: \(S= \left( { - \infty ;\frac{1}{2}} \right) \cup \left( {1; + \infty } \right).\)
b) \({x^2} + 5x + 4 < 0\)
Tam thức \(f\left( x \right) = {x^2} + 5x + 4\) có \(a - b + c = 1 - 5 + 4 = 0\) nên phương trình có hai nghiệm phân biệt \(x = - 1\) và \(x = - 4.\)
Mặt khác \(a = 1 > 0,\) do đó ta có bảng xét dấu sau:
Tập nghiệm của bất phương trình là: \(S = \left( { - 4; - 1} \right).\)
c) \( - 3{x^2} + 12x - 12 \ge 0\)
Tam thức \(f\left( x \right) = - 3{x^2} + 12x - 12 = - 3\left( {{x^2} - 4x + 4} \right) = - 3{\left( {x - 2} \right)^2} \le 0\)
Do đó
\( - 3{x^2} + 12x - 12 \ge 0 \Leftrightarrow - 3{x^2} + 12x - 12 = 0 \Leftrightarrow - 3{\left( {x - 2} \right)^2} = 0 \Leftrightarrow x = 2.\)
Tập nghiệm của bất phương trình là: \(S = \left( { 2} \right).\)
d) \(2{x^2} + 2x + 1 < 0.\)
Tam thức \(f\left( x \right) = 2{x^2} + 2x + 1\) có \(\Delta = - 1 < 0,\) hệ số \(a = 2 > 0\) nên \(f\left( x \right)\) luôn dướng với mọi \(x,\) tức là \(2{x^2} + 2x + 1 > 0\) với mọi \(x \in \mathbb{R}.\)
\( \Rightarrow \) bất phương trình vô nghiệm
(Trả lời bởi Hà Quang Minh)
Giải các phương trình sau:
a) \(\sqrt {2{x^2} - 14} = x - 1\)
b) \(\sqrt { - {x^2} - 5x + 2} = \sqrt {{x^2} - 2x - 3} .\)
Thảo luận (1)Hướng dẫn giảia) \(\sqrt {2{x^2} - 14} = x - 1\quad \left( 1 \right)\)
ĐK: \(x - 1 \ge 0\,\, \Leftrightarrow \,\,x \ge 1.\)
\( \Rightarrow \) TXĐ: \(D = \left[ {1; + \infty } \right)\)
\(\begin{array}{l}\left( 1 \right)\,\, \Leftrightarrow \,\,{\left( {\sqrt {2{x^2} - 14} } \right)^2} = {\left( {x - 1} \right)^2}\\ \Leftrightarrow \,\,2{x^2} - 14 = {x^2} - 2x + 1\\ \Leftrightarrow \,\,{x^2} + 2x - 15 = 0\\ \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x = 3}\\{x = - 5}\end{array}} \right.\end{array}\)
Nhận thấy \(x = 3\) thỏa mãn điều kiện
Vậy nghiệm của phương trình \(\left( 1 \right)\) là: \(x = 3\)
b) \(\sqrt { - {x^2} - 5x + 2} = \sqrt {{x^2} - 2x - 3} \quad \left( 2 \right)\)
ĐK: \(\left\{ {\begin{array}{*{20}{c}}{ - {x^2} - 5x + 2 \ge 0}\\{{x^2} - 2x - 3 \ge 0}\end{array}} \right.\,\, \Leftrightarrow \,\,\frac{{ - 5 - \sqrt {33} }}{2} \le x \le - 1.\)
\( \Rightarrow \) TXĐ: \(D = \left[ {\frac{{ - 5 - \sqrt {33} }}{2}; - 1} \right].\)
\(\begin{array}{l}\left( 2 \right)\,\, \Leftrightarrow \,\,{\left( {\sqrt { - {x^2} - 5x + 2} } \right)^2} = {\left( {\sqrt {{x^2} - 2x - 3} } \right)^2}\\ \Leftrightarrow \,\, - {x^2} - 5x + 2 = {x^2} - 2x - 3\\ \Leftrightarrow \,\,2{x^2} + 3x - 5 = 0\\ \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = - \frac{5}{2}}\end{array}} \right.\end{array}\)
Nhận thấy \(x = - \frac{5}{2}\) thỏa mãn điều kiện
Vậy nghiệm của phương trình \(\left( 2 \right)\) là: \(x = - \frac{5}{2}\)
(Trả lời bởi Hà Quang Minh)