Bài tập cuối chương 6

Bài tập 6.44 (SGK Kết nối tri thức với cuộc sống - Tập 2 - Trang 30)

Hướng dẫn giải

Nửa chu vi hình chữ nhật là: \(20:2 = 10\left( {cm} \right)\)

Chiều dài và chiều rộng là nghiệm của phương trình: \({x^2} - 10x + 24 = 0\)

Vì \(\Delta ' = {\left( { - 5} \right)^2} - 24 = 1 > 0\) nên phương trình có hai nghiệm phân biệt: \({x_1} = 5 + 1 = 6;{x_2} = 5 - 1 = 4\).

Do đó, chiều dài và chiều rộng của hình chữ nhật lần lượt là 6cm và 4cm (do chiều dài > chiều rộng).

Chọn B

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 6.43 (SGK Kết nối tri thức với cuộc sống - Tập 2 - Trang 30)

Hướng dẫn giải

Vì \(\Delta  = {\left( { - 5} \right)^2} - 4.6 = 1 > 0\) nên phương trình có hai nghiệm phân biệt.

Theo định lí Viète ta có: \({x_1} + {x_2} = 5;{x_1}.{x_2} = 6\)

Ta có: \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {5^2} - 2.6 = 13\)

Chọn A

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 6.48 (SGK Kết nối tri thức với cuộc sống - Tập 2 - Trang 31)

Hướng dẫn giải

Vì \(\Delta  = {\left( { - 11} \right)^2} - 4.30 = 1 > 0\) nên phương trình có hai nghiệm phân biệt.

Theo định lí Viète ta có: \({x_1} + {x_2} = 11;{x_1}.{x_2} = 30\).

a) Ta có: \(x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = {11^2} - 2.30 = 61\)

b) \(x_1^3 + x_2^3 = {\left( {{x_1} + {x_2}} \right)^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right) = {11^3} - 3.30.11 = 341\)

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 6.45 (SGK Kết nối tri thức với cuộc sống - Tập 2 - Trang 30)

Hướng dẫn giải

Vẽ đồ thị hàm số \(y = \frac{5}{2}{x^2}\):

Lập bảng một số cặp giá trị tương ứng của x và y:

x-2-3/2-1013/22
y1045/85/205/245/810

Biểu diễn các điểm \(\left( { - 2;10} \right);\left( {\frac{{ - 3}}{2};\frac{{45}}{8}} \right);\left( { - 1;\frac{5}{2}} \right);\left( {0;0} \right);\left( {1;\frac{5}{2}} \right),\left( {\frac{3}{2};\frac{{45}}{8}} \right);\left( {2;10} \right)\) trên mặt phẳng tọa độ Oxy và nối chúng lại ta được đồ thị hàm số \(y = \frac{5}{2}{x^2}\) như hình vẽ (đường màu xanh).

Vẽ đồ thị hàm số \(y =  - \frac{5}{2}{x^2}\):

Lập bảng một số cặp giá trị tương ứng của x và y:

x-2-3/2-1013/22
y-10-45/8-5/20-5/2-45/8-10

Biểu diễn các điểm \(\left( { - 2; - 10} \right);\left( {\frac{{ - 3}}{2}; - \frac{{45}}{8}} \right);\left( { - 1; - \frac{5}{2}} \right);\left( {0;0} \right);\left( {1; - \frac{5}{2}} \right),\left( {\frac{3}{2}; - \frac{{45}}{8}} \right);\left( {2; - 10} \right)\) trên mặt phẳng tọa độ Oxy và nối chúng lại ta được đồ thị hàm số \(y =  - \frac{5}{2}{x^2}\) như hình vẽ (đường màu đỏ).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 6.47 (SGK Kết nối tri thức với cuộc sống - Tập 2 - Trang 30)

Hướng dẫn giải

a) Vì \(\Delta ' = {\left( { - 3\sqrt 5 } \right)^2} - 5.2 = 35 > 0\) nên phương trình có hai nghiệm phân biệt \({x_1} = \frac{{3\sqrt 5  + \sqrt {35} }}{5};{x_2} = \frac{{3\sqrt 5  - \sqrt {35} }}{5}\).

b) Vì \(\Delta ' = {\left( {\sqrt 6 } \right)^2} - 2.3 = 0\) nên phương trình có nghiệm kép \({x_1} = {x_2} = \frac{{ - \sqrt 6 }}{2}\)

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 6.49 (SGK Kết nối tri thức với cuộc sống - Tập 2 - Trang 31)

Hướng dẫn giải

a) Hai số u và v là nghiệm của phương trình \({x^2} - 13x + 40 = 0\)

Ta có: \(\Delta  = {\left( { - 13} \right)^2} - 4.40 = 9 > 0\), \(\sqrt{\Delta} = \sqrt{9} = 3\).

Suy ra phương trình có hai nghiệm: \({x_1} = \frac{{13 + 3}}{2} = 8;{x_2} = \frac{{13 - 3}}{2} = 5\).

Vậy \(u = 8;v = 5\) hoặc \(u = 5;v = 8\).

b) Ta có: \(u\left( { - v} \right) =  - 77,u + \left( { - v} \right) = 4\)

Hai số u và \( - v\) là nghiệm của phương trình \({x^2} - 4x - 77 = 0\)

Vì \(\Delta ' = {\left( { - 2} \right)^2} - 1.\left( { - 77} \right) = 81 > 0\), \(\sqrt{\Delta '} = \sqrt{81} = 9\).

Suy ra phương trình có hai nghiệm: \({x_1} = 2 + 9 = 11;{x_2} = 2 - 9 =  - 7\).

Vậy \(u = 11;v = 7\) hoặc \(u =  - 7;v =  - 11\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 6.51 (SGK Kết nối tri thức với cuộc sống - Tập 2 - Trang 31)

Hướng dẫn giải

Gọi x là lãi suất gửi tiết kiệm của bác Hương (x được cho dưới dạng số thập phân), điều kiện: \(x > 0\).

Số tiền lãi thu được sau kì gửi thứ nhất là: \(100 + 100x = 100\left( {1 + x} \right)\) (triệu đồng).

Số tiền cả vốn lẫn lãi bác Hương thu được sau kì gửi thứ hai với 100 triệu đồng là:

\(100\left( {1 + x} \right) + \left[ {100\left( {1 + x} \right)} \right]x = 100\left( {1 + x} \right)\left( {1 + x} \right) = 100{\left( {x + 1} \right)^2}\) (triệu đồng).

Với 50 triệu đồng bác gửi thêm, thì sau 1 năm bác thu được số tiền cả vốn lẫn lãi là: \(50 + 50x = 50\left( {1 + x} \right)\) (triệu đồng).

Vì sau hai năm (kể từ khi gửi lần đầu), bác Hương nhận được số tiền cả vỗn lẫn lãi là 176 triệu đồng nên ta có phương trình: \(100{\left( {x + 1} \right)^2} + 50\left( {1 + x} \right) = 176\)

\(100{x^2} + 250x - 26 = 0\)

\(50{x^2} + 125x - 13 = 0\)

Vì \(\Delta  = {125^2} - 4.50.\left( { - 13} \right) = 18\;225 > 0 \Rightarrow \sqrt \Delta   = 135\) nên phương trình có hai nghiệm phân biệt \({x_1} = \frac{{ - 125 + 135}}{{2.50}} = 0,1\left( {tm} \right);{x_1} = \frac{{ - 125 - 135}}{{2.50}} =  - 2,6\left( {ktm} \right)\)

Vậy lãi suất năm của hình thức gửi tiết kiệm này là 10%.

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 6.52 (SGK Kết nối tri thức với cuộc sống - Tập 2 - Trang 31)

Hướng dẫn giải

Gọi thời gian học sinh khối lớp 9 làm riêng hoàn thành công việc là x (giờ), điều kiện: \(x > 0\).

Thời gian học sinh khối lớp 8 làm riêng hoàn thành công việc là \(x + 1\) (giờ).

Trong 1 giờ, học sinh khối lớp 9 làm được: \(\frac{1}{x}\) (công việc).

Trong 1 giờ, học sinh khối lớp 8 làm được: \(\frac{1}{{x + 1}}\) (công việc).

Trong 1 giờ, cả hai khối lớp làm được: \(\frac{1}{x} + \frac{1}{{x + 1}} = \frac{{x + x + 1}}{{x\left( {x + 1} \right)}} = \frac{{2x + 1}}{{x\left( {x + 1} \right)}}\) (công việc)

Vì nếu làm chung thì sẽ hoàn thành công việc sau 1 giờ 12 phút\( = \frac{6}{5}\) giờ nên ta có phương trình:

\(\frac{{2x + 1}}{{x\left( {x + 1} \right)}} = \frac{5}{6}\)

Nhân cả hai vế của phương trình với \(6x\left( {x + 1} \right)\) để khử mẫu ta được phương trình:

\(6\left( {2x + 1} \right) = 5x\left( {x + 1} \right)\)

\(5{x^2} - 7x - 6 = 0\)

Vì \(\Delta  = {\left( { - 7} \right)^2} - 4.5.\left( { - 6} \right) = 169 > 0\) nên phương trình có hai nghiệm phân biệt

\({x_1} = \frac{{7 + \sqrt {169} }}{{10}} = 2\left( {tm} \right);{x_2} = \frac{{7 - \sqrt {169} }}{{10}} = \frac{{ - 3}}{5}\left( {ktm} \right)\)

Vậy nếu làm riêng, học sinh khối 9 làm 2 giờ xong công việc và học sinh khối 8 làm 3 giờ xong công việc.

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 6.50 (SGK Kết nối tri thức với cuộc sống - Tập 2 - Trang 31)

Hướng dẫn giải

Với \(d = 300feet\) ta có: \(0,05{v^2} + 1,1v = 300\)

\(0,05{v^2} + 1,1,v - 300 = 0\)

Ta có: \(\Delta  = 1,{1^2} - 4.0,05.\left( { - 300} \right) = 61,21\) nên phương trình có hai nghiệm phân biệt

\(\begin{array}{l}{v_1} = \frac{{ - 1,1 + \sqrt {61,21} }}{{2.0,05}} =  - 11 + \sqrt {6121} \left( {tm\;do\;v > 0} \right);\\{v_2} = \frac{{ - 1,1 - \sqrt {61,21} }}{{2.0,05}} =  - 11 - \sqrt {6121} \left( {ktm\;do\;v > 0} \right)\end{array}\)

Vì \( - 11 + \sqrt {6121}  < 70\) nên ô tô dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó không chạy nhanh hơn giới hạn tốc độ của đường cao tốc này.

Chú ý khi giải: Tốc độ trong chuyển động luôn dương.

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 6.46 (SGK Kết nối tri thức với cuộc sống - Tập 2 - Trang 30)

Hướng dẫn giải

Vì đồ thị hàm số đi qua điểm A(3; 3) nên thay x = 3, y = 3 vào hàm số ta được:

3 = a.32, hay 9a = 3, suy ra \(a=\dfrac{1}{3}\).

Vậy \(a=\dfrac{1}{3}\). Khi đó ta có hàm số \(y=\dfrac{1}{3}x^2\).

Lập bảng một số giá trị tương ứng giữa x và y của hàm số \(y=\dfrac{1}{3}x^2\):

x-6-3036
y1230312

Từ đó vẽ được đồ thị của hàm số \(y=\dfrac{1}{3}x^2\) như sau:

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)