Bài tập cuối chương 5

Bài 11 (SGK Cánh Diều trang 121)

Hướng dẫn giải

a) Xét tam giác IAM ta có: \(\widehat {AMI} + \widehat {MIA} + \widehat {MAI} = {180^o}\)

Xét tam giác ICN có: \(\widehat {CNI} + \widehat {NIC} + \widehat {NCI} = {180^o}\)

Vì: \(\widehat {MIA} = \widehat {NIC}\) (đối đỉnh)

\(\widehat {MAI} = \widehat {NCI}\) (do AB // CD)

Suy ra: \(\widehat {AMI} = \widehat {CNI}\)

Xét tam giác IAM  và tam giác ICN có:

\(\widehat {AMI} = \widehat {CNI}\)

AM = CN

\(\widehat {MIA} = \widehat {NIC}\)

\( \Rightarrow \Delta IAM = \Delta ICN(g - c - g)\)

b) Ta có: AM = CN (gt)

AM // CN (vì M \( \in\) AB, N \( \in\) CD)

Suy ra tứ giác AMCN là hình bình hành.

c) Vì tứ giác AMCN là hình bình hành

Suy ra I là trung điểm của AC

Suy ra I là trung điểm của BD (vì ABCD là hình bình hành)

Suy ra ba điểm B, I, D thẳng hàng.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 12 (SGK Cánh Diều trang 121)

Hướng dẫn giải

a) Vì BCMD là hình bình hành

Suy ra: BD = CM (1)

Mà ABCD là hình thoi

O là giao điểm của AC và BD

\( \Rightarrow O{\rm{D}} = \frac{1}{2}B{\rm{D}}(2)\)

Từ (1) và (2) suy ra: \(O{\rm{D}} = \frac{1}{2}CM\)

Vì BCMD là hình bình hành nên BD // CM (3)

Vì ABCD là hình thoi nên \(B{\rm{D}} \bot AC(4)\)

Từ (3), (4) suy ra: \(AC \bot CM\)

Suy ra: tam giác ACM là tam giác vuông tại C

b) ta có: AD // BC (vì ABCD là hình thoi)

DM // BC (vì DBCM là hình bình hành)

Suy ra A, D, M thẳng hàng

c) Ta có:BC = DC (vì ABCD là hình thoi)

DM = BC (vì DBCM là hình bình hành)

Suy ra: DM = DC

Suy ra tam giác DCM là tam giác cân tại D

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 13 (SGK Cánh Diều trang 121)

Hướng dẫn giải

a) Vì ANCD là hình vuông

suy ra: AB = BC = CD = DA

Gọi M là trung điểm của các cạnh BC, CD

Suy ra: BM = MC = CN = CD

Xét hai tam giác vuông ABM và BCN có:

AB = BC

BM = CN

\( \Rightarrow \Delta ABM = \Delta BCN\) (hai cạnh góc vuông)

b) theo câu a: \(\Delta ABM = \Delta BCN\)

\(\begin{array}{l} \Rightarrow \widehat {BAM} = \widehat {CBN}\\ \Rightarrow \widehat {BAO} = \widehat {MBO}\end{array}\)

c) Vì \(\Delta ABM = \Delta BCN\)

\(\begin{array}{l} \Rightarrow \widehat {MAB} = \widehat {NBM}\\ \Rightarrow \widehat {MAB} = \widehat {OBM}\end{array}\)

Mà: \(\widehat {MAB} + \widehat {OMB} = {90^o}\) (do tam giác ABM vuông tại M)

\( \Rightarrow \widehat {OBM} + \widehat {OMB} = {90^o}\)

Xét tam giác OBM có:

\(\begin{array}{l}\widehat {BOM} + \widehat {OBM} + \widehat {OMB} = {180^o}\\ \Rightarrow \widehat {BOM} + {90^o} = {180^o}\\ \Rightarrow \widehat {BOM} = {180^o} - {90^o} = {90^o}\end{array}\)

Suy ra: tam giác OBM vuông tại O

\(\begin{array}{l} \Rightarrow BO \bot OM\\ \Rightarrow BN \bot AM\end{array}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)