Họa tiết trên vải ở Hình 55 gợi lên hình ảnh của hình thoi.
Hình thoi có những tính chất gì? Có những dấu hiệu nào để nhận biết một tứ giác là hình thoi?
Họa tiết trên vải ở Hình 55 gợi lên hình ảnh của hình thoi.
Hình thoi có những tính chất gì? Có những dấu hiệu nào để nhận biết một tứ giác là hình thoi?
So sánh độ dài các cạnh của tứ giác ABCD ở hình 56.
Thảo luận (1)Hướng dẫn giảiDo tứ giác ABCD là hình thoi nên AB = BC = CD = DA.
(Trả lời bởi Hà Quang Minh)
Cho hình thoi ABCD có hai đường chéo là AC và BD cắt nhau tại O (hình 58)
a) Hình thoi ABCD có là hình bình hành hay không?
b) Hai đường chéo AC và BD có vuông góc với nhau hay không?
c) Hai tam giác ABC và ADC có bằng nhau hay không? Tia AC có phải là tia phân giác của \(\widehat {BA{\rm{D}}}\) hay không?
Thảo luận (1)Hướng dẫn giảia) Hình thoi ABCD có là hình bình hành (vì AB = BC = CD = DA)
b) Xét tam giác ABD có AB = AD nên tam giác ABD là tam giác cân tại A.
Suy ra đường trung tuyến AO đồng thời là đường cao.
Suy ra AO vuông góc với BD
Hay AC vuông góc với BD
c) Xét tam giác ABC và tam giác ADC có:
AD = AB
CD = CB
AC chung
\(\begin{array}{l}\Delta ABC = \Delta A{\rm{D}}C\\ \Rightarrow \widehat {DAC} = \widehat {BAC}\end{array}\)
Mà AC nằm giữa 2 tia AB và AD
Suy ra: AC là tia phân giác của góc BAD
(Trả lời bởi Hà Quang Minh)
Cho hình thoi ABCD có \(\widehat {ABC} = {120^o}\). Chứng minh tam giác ABD là tam giác đều.
Thảo luận (1)Hướng dẫn giảiDo tứ giác ABCD là hình thoi \(\Rightarrow AB=AD\) và BD là đường phân giác của góc \(\widehat{ABC}\)
⇒ \(\left\{{}\begin{matrix}AB=AD\\\widehat{ABD}=\dfrac{\widehat{ABC}}{2}=\dfrac{120^o}{2}=60^o\end{matrix}\right.\)
⇒ Tam giác ABD là tam giác đều.
(Trả lời bởi Hà Quang Minh)
a) Cho hình bình hành ABCD có hai cạnh kề AB và BC bằng nhau. ABCD có phải là hình thoi hay không?
b) Cho hình bình hành ABCD có hai đường chéo AC và BD vuông góc với nhau (hình 60).
- Đường thẳng AC có phải là đường trung trực của đoạn thẳng BD hay không?
ABCD có phải là hình thoi hay không?
Thảo luận (1)Hướng dẫn giảia) Hình bình hành ABCD có AB = BC
Suy ra: AB = BC = CD = DA
Nên hình bình hành ABCD là hình thoi
b) AC giao điểm với BD tại O
Ta có: O là trung điểm của BD (do ABCD là hình bình hành)
AO vuông góc với BD
Suy ra AO là đường trung trực của đoạn thẳng BD
Suy ra tam giác ABD cân tại A
Suy ra: AB = AD
Suy ra AB = DC = AD = BC
Hình bình hành ABCD là hình thoi
(Trả lời bởi Hà Quang Minh)
Cho tam giác ABC cân tại A có M là trung điểm BC. Trên tia đối của tia MA lấy điểm N sao cho MN = MA. Chứng minh tứ giác ABNC là hình thoi.
Thảo luận (1)Hướng dẫn giảiTứ giác ABNC có: M là giao điểm của AN và BC
MN = MA
MB = MC (do M là trung điểm của BC)
Suy ra: tứ giác ABNC là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)
Mà: AB = AC (do tam giác ABC cân tại A)
Suy ra: hình bình hành ABNC là hình thoi (Hình bình hành có 2 cạnh kề bằng nhau)
(Trả lời bởi Hà Quang Minh)
Cho hình bình hành ABCD có tia AC là tia phân giác của góc DAB. Chứng minh ABCD là hình thoi.
Thảo luận (1)Hướng dẫn giảiVì ABCD là hình bình hành nên 2 đường chéo AC và BD cắt nhau tại trung điểm I của mỗi đường.
Xét tam giác ABD có đường trung tuyến AI đồng thời là đường phân giác nên tam giác ABD cân tại A.
Suy ra AD = AB.
Do đó ABCD là hình thoi (Hình bình hành có 2 cạnh kề bằng nhau)
(Trả lời bởi Hà Quang Minh)
Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O. Chứng minh:
\(A{C^2} + B{{\rm{D}}^2} = 4\left( {O{A^2} + O{B^2}} \right) = 4{\rm{A}}{B^2}\)
Thảo luận (2)Hướng dẫn giảiXét \(\Delta OAB\) vuông tại A có: \(O{A^2} + O{B^2} = A{B^2}\)
Vì ABCD là hình thoi nên OA = OC; OB = OD
Ta có: \(\begin{array}{l}A{C^2} + B{D^2} = {(OA + OC)^2} + {(OB + OD)^2}\\ = {(OA + OA)^2} + {(OB + OB)^2}\\ = {(2OA)^2} + {(2OB)^2} = 4.O{A^2} + 4.O{B^2} = 4{(OA^2 + OB^2)} = 4.A{B^2}\end{array}\)
(Trả lời bởi Hà Quang Minh)
Cho hình thoi ABCD có \(\widehat {C{\rm{D}}B} = {40^o}\). Tính số đo mỗi góc của hình thoi ABCD.
Thảo luận (1)Hướng dẫn giảiDo ABCD là hình thoi nên DB là tia phân giác của \(\widehat {CDA}\)
Mà: \(\widehat {CDB} = {40^0} \Rightarrow \widehat {CDA} = {2.40^0} = {80^0} \Rightarrow \widehat {CBA} = \widehat {CDA} = {80^0}\)
Mặt khác:
\(\begin{array}{l}\widehat {BAD} + \widehat {CBA} + \widehat {CDA} + \widehat {BCD} = {360^0}\\\widehat {BAD} + {80^0} + {80^0} + \widehat {BCD} = {360^0}\end{array}\)
(do ABCD là hình thoi nên \(\widehat {BAD} = \widehat {BCD}\))
\( \Rightarrow \widehat {BAD} = \widehat {BCD} = \frac{{{{360}^0} - {{80}^0} - {{80}^0}}}{2} = {100^0}\)
Vậy hình thoi ABCD có: \(\widehat {BCA} = \widehat {CDA} = {80^0};\widehat {BAD} = \widehat {BCD} = {100^0}\)
(Trả lời bởi Hà Quang Minh)
Hình 62 mô tả một ô lưới mắt cáo có dạng hình thoi với độ dài của hai đường chéo là 45 mmm và 90 mm. Độ dài cạnh của ô lưới mắt đó là bao nhiêu milimét (làm tròn kết quả đến hàng đơn vị)?
Thảo luận (1)Hướng dẫn giảiGiả sử mắt lưới cần tính độ dài cạnh là hình thoi ABCD.
Có. AC = 45mm; BD = 90mm.
Gọi O là giao điểm của AC và BD.
Vì ABCD là hình thoi nên
\(\begin{array}{l}OA = OC = \dfrac{{AC}}{2} = \dfrac{{45}}{2} = 22,5(mm)\\OB = OD = \dfrac{{BD}}{2} = \dfrac{{90}}{2} = 45(mm)\end{array}\)
Xét \(\Delta AOB\) vuông tại O có:
\(\begin{array}{l}A{O^2} + O{B^2} = A{B^2}\\{(22,5)^2} + {(45)^2} = A{B^2} \Rightarrow A{B^2} = 2.531,25 \Rightarrow AB \approx 50(mm)\end{array}\)
(Trả lời bởi Hà Quang Minh)