Bài 6: Hệ thức lượng trong tam giác

Bài 3.8 (SGK Kết nối tri thức với cuộc sống trang 42)

Hướng dẫn giải

Tham khảo:

a) Ta có sơ đồ đường đi như sau:

 

Trong đó: B là nơi động cơ bị hỏng, C là ví trí neo đậu của tàu trên hòn đảo.

Khoảng cách từ cảng A tới đảo nơi tàu neo đậu là đoạn AC.

 Quãng đường tàu đi được sau 90 phút hay 1,5 giờ (ngay trước khi hỏng động cơ) là:

70.1,5 = 105 (km) hay AB = 105.

Sau 2 giờ tàu trôi tự do từ B đến C với vận tốc 8km/h , suy ra BC= 8.2 = 16 (km).

Ban đầu tàu di chuyển theo hướng \(S{70^o}E\) nên \(\widehat {BAS} = {70^o}\). Sau khi động cơ bị hỏng, tàu trôi theo hướng Nam do đó BC song song với AS.

\( \Rightarrow \widehat {ABC} = {180^o} - \widehat {BAS} = {110^o}\)

Áp dụng định lí cosin cho tam giác ABC ta có:

\({AC^2} = {BC^2} + {AB^2} - 2.AC.BC.\cos B\)

\(\begin{array}{l} \Rightarrow {AC^2} = {16^2} + {105^2} - 2.16.105.\cos {110^o} \approx 12430\\ \Rightarrow AC \approx 111,5.\end{array}\)

Vậy khoảng cách từ cảng A tới đảo nơi tàu neo đậu là khoảng 111,5 km.

b) 

Theo sơ đồ, hướng từ cảng A tới đảo nơi tàu neo đậu là \(S{\alpha ^o}E\) với \({\alpha ^o} = \widehat {CAS}\).

Do BC // AS nên  \(\widehat {CAS}= \widehat {ACB}\)

Áp dụng định lí sin cho tam giác ABC ta có:

\(\frac{BC}{{\sin A}} = \frac{AC}{{\sin B}} = \frac{AB}{{\sin C}}\)\( \Rightarrow \sin C = \frac{{AB.\sin B}}{AC}\)

Mà \(\widehat B = {110^o}\); \(AC \approx 111,5\); AB = 105.

\(\begin{array}{l} \Rightarrow \sin C= \frac{{105.\sin {{110}^o}}}{{111,5}} \approx 0,885\\ \Rightarrow \widehat C \approx {62^o}(do\;\widehat C < {90^o})\end{array}\)

Vậy hướng từ cảng A tới đảo nơi tàu neo đậu là \(S{62^o}E\).

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)

Bài 3.9 (SGK Kết nối tri thức với cuộc sống trang 43)

Hướng dẫn giải

Tham khảo:

a)

 

Gọi H là hình chiếu của A lên đường thẳng BC.

Ta có: \(\widehat {HAB} = {50^o}\); \(\widehat {HAC} = {40^o}\)

\( \Rightarrow \widehat {BAC} = {50^o} - {40^o} = {10^o}\) (1)

Xét tam giác ABH, vuông tại H ta có:

\(\widehat H = {90^o};\;\widehat {BAH} = {50^o}.\)

\( \Rightarrow \widehat {HBA} = {180^o} - {90^o} - {50^o} = {40^o}\) hay \(\widehat {CBA} = {40^o}\). (2)

Từ (1) và (2), suy ra: \(\widehat {BCA} = {180^o} - {40^o} - {10^o} = {130^o}.\)

Vậy ba góc của tam giác ABC lần lượt là: \(\widehat A = {10^o};\;\widehat B = {40^o};\;\widehat C = {130^o}\).

b)

Áp dụng định lý sin cho tam giác ABC, ta được:

 \(\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}}\) \( \Rightarrow AB = \frac{{BC.\sin C}}{{\sin A}}\)

Mà: \(BC = 5\;(m);\;\;\widehat C = {130^o};\;\widehat A = {10^o}\)

\( \Rightarrow AB = \frac{{5.\sin {{130}^o}}}{{\sin {{10}^o}}} \approx 22\;(m)\)

Xét tam giác ABH, vuông tại H ta có:

\(\sin \widehat {BAH} = \frac{{BH}}{{AB}}\)\( \Rightarrow BH = AB.\,\,\sin \widehat {BAH}\)

Mà: \(AB \approx 22\;(m);\;\;\widehat {BAH} = {50^o}\)

\( \Rightarrow BH \approx 22.\sin {50^o} \approx 16,85\;(m)\)

Vậy chiều cao của tòa nhà là: \(BH-{\rm{ }}BC + 7 = 16,85-5 + 7 = 18,85{\rm{ }}\left( m \right)\)

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)

Bài 3.10 (SGK Kết nối tri thức với cuộc sống trang 43)

Hướng dẫn giải

Tham khảo:

 

Bước 1:

Đánh dấu vị trí quan sát tại điểm A, chiều rộng của hòn đảo kí hiệu là đoạn BC.

Gọi H là hình chiếu của A trên BC.

Trên tia đối của tia AH, lấy điểm M, ghi lại khoảng cách AM = a.

 

Bước 2:

Tại A, quan sát để xác định các góc \(\widehat {BAC} = \alpha ,\;\widehat {HAC} = \beta \).

Tiếp tục quan sát tại M, xác định góc \(\widehat {HMC} = \gamma \).

Bước 3: Giải tam giác AMC, tính AC.

AM = a, \(\widehat {AMC} = \widehat {HMC} = \gamma \) và \(\widehat {MAC} = {180^o} - \beta \)

\( \Rightarrow \widehat {ACM} = {180^o} - \gamma  - \left( {{{180}^o} - \beta } \right) = \beta  - \gamma \)

Áp dụng định định lí sin trong tam giác AMC ta có:

\(\frac{{AC}}{{\sin AMC}} = \frac{{AM}}{{\sin ACM}} \Rightarrow AC = \sin \gamma .\frac{a}{{\sin \left( {\beta  - \gamma } \right)}}\)

Bước 4:

 \(\widehat {ABC} = {90^o} - \widehat {HAB} = {90^o} - (\alpha  - \beta )\)  

Áp dụng định lí sin cho tam giác ABC ta có:

\(\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} \Rightarrow BC = \sin \alpha .\frac{{\sin \gamma .\frac{a}{{\sin \left( {\beta  - \gamma } \right)}}}}{{\sin \left( {{{90}^o} - (\alpha  - \beta )} \right)}}.\).

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)

Bài 3.11 (SGK Kết nối tri thức với cuộc sống trang 43)

Hướng dẫn giải

Bước 1:

Áp dụng định lí cos trong tam giác ABC ta có:

\(\begin{array}{l}A{C^2} = {6^2} + {8^2} - 2.6.8.\cos {105^o}\\ \Rightarrow AC \approx 11,1735\;(km)\end{array}\)

Bước 2:

Lại có: Theo định lí sin thì

 \(\begin{array}{l}\frac{{AB}}{{\sin ACB}} = \frac{{AC}}{{\sin ABC}} \Rightarrow \sin ACB = \frac{{8.\sin {{105}^o}}}{{11,1735}}\\ \Rightarrow \widehat {ACB} \approx 44^o\\ \Rightarrow \widehat {ACD} = {135^o} - 44^o = 91^o\end{array}\)

Bước 3:

Áp dụng định lí cos trong tam giác ACD ta có:

  \(\begin{array}{l}A{D^2} = {12^2} + 11,{1735^2} - 2.12.11,1735\cos 91^o\\ \Rightarrow AD \approx 16,5387\;(km)\end{array}\)

Bước 4:

Độ dài đường mới giảm số kilomet so với đường cũ là: \(12 + 6 + 8 - 16,5387 = 9,4613\;(km)\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)