Sau giờ thực hành trải nghiệm, ba đội A, B, C bốc thăm để xác định thứ tự trình bày, thuyết minh về sản phẩm của mỗi đội
a) Hãy liệt kê tất cả các kết quả bốc thăm có thể xảy ra
b) Có tất cả bao nhiêu kết quả như vậy? Ngoài cách đếm lần lượt từng kết quả có cách tìm nào nhanh hơn không?
Thảo luận (1)Hướng dẫn giảia) Các trường hợp thuyết trình theo thứ tự 1, 2, 3 có thể xảy ra là:
ABC, ACB, BAC, BCA, CAB, CBA
b)
+) Từ câu a) ta thấy có tất cả 6 kết quả
+) Ngoài cách đếm ta có thể sử dụng quy tắc nhân để tìm kết quả
Kết quả bốc thăm thuyết trình gồm 3 công đoạn
Công đoạn 1: Bốc thăm xác định đội trình bày đầu tiên, có thể xảy ra 3 kết quả (A, B hoặc C)
Công đoạn 2: Bốc thăm xác định đội trình bày thứ 2, có thể xảy ra 2 kết quả (trừ 1 đội đã thuyết trình đầu tiên
Công đoạn 3: Đội trình bày cuối cùng chỉ có thể duy nhất là đội còn lại
Áp dụng quy tắc nhân, ta tìm được số kết quả có thể xảy ra là:
\(3.2.1 = 6\) (cách)
(Trả lời bởi Hà Quang Minh)
Một nhóm bạn gồm 6 thành viên cùng đi xem phim, đã mua 6 vé có ghế ngồi cùng dãy và kế tiếp nhau (như hình 3). Có bao nhiêu cách sắp xếp chỗ ngồi cho các thành viên của nhóm?
Thảo luận (1)Hướng dẫn giảiMỗi cách sắp xếp 6 bạn vào 6 chiếc ghế trống là hoán vị của 6 chiếc ghế. Do đó, số cách sắp xếp chỗ ngồi cho các thành viên trong nhóm là
\({P_6} = 6! = 720\) (cách)
(Trả lời bởi Hà Quang Minh)
Một giải bóng đá có 14 đội bóng tham gia. Có bao nhiêu khả năng về thứ hạng các đội bóng khi mùa giải kết thúc?
Thảo luận (1)Hướng dẫn giảiMỗi khả năng về thứ hạng của các đội bóng trong mùa giải là hoán vị của các đội bóng tham gia. Do đó, số khả năng về thứ hạng của các đội bóng trong mùa giải là
\({P_{14}} = 14!\) (cách)
(Trả lời bởi Hà Quang Minh)
Tại một trạm quan sát có sẵn 5 lá cờ màu đỏ, trắng, xanh, vàng và cam (kí hiệu Đ, T, X, V, C). Khi cần báo một tín hiệu, người ta chọn ba lá cờ và cắm vào 3 vị trí sẵn thành một hàng (Xem hình 4)
a) Hãy chỉ ra ít nhất 4 cách chọn và cắm cờ để báo 4 tín hiệu khác nhau
b) Bằng cách này, có thể báo nhiều nhất bao nhiêu tín hiệu khác nhau?
Thảo luận (1)Hướng dẫn giảia) Chọn 3 cờ đỏ, trắng và xanh ta có 3 cách cắm để có 4 tín hiệu khác nhau là: ĐTX, ĐXT, TĐX, TXĐ
b) Việc cắm cờ để báo tín hiệu trên bao gồm 3 công đoạn
Công đoạn 1: Chọn cờ để cắm vào vị trí thứ nhất, có 5 cách chọn trong 5 màu khác nhau
Công đoạn 2: Chọn cờ để cắm vào vị trí thứ 2, có 4 cách chọn trong 4 màu còn lại
Công đoạn 3: Chọn cờ để cắm vào vị trí cuối cùng, có 3 cách chọn trong 3 màu còn lại
Áp dụng quy tắc nhân, ta có số cách cắm cờ để báo tín hiệu nhiều nhất là:
\(5.4.3 = 60\) (cách)
(Trả lời bởi Hà Quang Minh)
Từ 7 chữ số số 1; 2; 3; 4; 5; 6; 7 lập được các số có 3 chữ số đôi một khác nhau
a) Có thể lập được bao nhiêu số như vậy?
b) Trong các số đó có bao nhiêu số lẻ?
Thảo luận (1)Hướng dẫn giảia) Mỗi số có 3 chữ số đôi một khác nhau lập được từ 7 chữ số đã cho là một chỉnh hợp chập 3 của 7 chữ số. Do đó, số các số lập được là
\(A_7^3 = 7.6.5 = 210\) (số)
b) Việc lập ra được một số lẻ phải qua 2 công đoạn
Công đoạn 1: Chọn chữ số hàng đơn vị là chữ số lẻ, có 4 cách chọn (1; 3; 5 hoặc 7)
Công đoạn 2: Chọn 2 chữ số bất kì trong 6 chữ số còn lại và sắp xếp chúng cho vị trí chữ số hàng trăm và hàng chục, mỗi số như vậy là một chỉnh hợp chập 2 của 6 phần tử, nên số các số được lập ra là: \(A_6^2 = 6.5 = 30\) (cách)
Áp dụng quy tắc nhân, ta có số các số có 3 chữ số lập được từ 7 chữ số đã cho là số lẻ là: \(4.30 = 120\) (số)
(Trả lời bởi Hà Quang Minh)
Lan vừa mua 4 cuốn sách kí hiệu là A, B, C và D. Bạn ấy dự định chọn ra 3 cuốn để đưa về quê đọc trong dịp nghỉ hè
a) Hãy liệt kê tất cả các cách Lan có thể chọn 3 cuốn từ 4 cuốn sách. Có tất cả bao nhiêu cách?
b) Lan dự định đọc lần lượt từng cuốn. Lan có bao nhiêu cách sắp xếp thứ tự 3 cuốn đã chọn?
c) Lan có bao nhiêu cách chọn 3 cuốn sách từ 4 cuốn sách và sắp xếp theo thứ tự để đọc lần lượt từng cuốn một?
Thảo luận (1)Hướng dẫn giảia) Các cách Lan có thể chọn 3 cuốn từ 4 cuốn sách Lan có là:
ABC, ABD, ACD, BCD
Có tất cả 4 cách chọn 3 cuốn sách trong số 4 cuốn sách Lan có để mang về quê
b) Mỗi cách sắp xếp thứ tự 3 cuốn sách đã chọn là một hoán vị của 3 cuốn sách, từ đó số cách sắp xếp 3 cuốn sách là số hoán vị của 3 cuốn sách:
\(3! = 3.2.1 = 6\) (cách)
c) Mỗi cách chọn 3 cuốn sách từ 4 cuốn sách và sắp xếp theo thứ tự để đọc lần lượt từng cuốn một là một chỉnh hợp chập 3 của 4 phần tử, từ đó số cách chọn và sắp xếp 3 cuốn sách và sắp xếp chúng là: \(A_4^3 = 4.3.2 = 24\) (cách)
(Trả lời bởi Hà Quang Minh)
Tính:
a) \(C_7^2\)
b) \(C_9^0 + C_9^9\)
c) \(C_{15}^3 - C_{14}^3\)
Thảo luận (1)Hướng dẫn giảia) \(C_7^2 = \frac{{7!}}{{2!.5!}} = \frac{{7.6}}{2} = 21\)
b) \(C_9^0 + C_9^9 = \frac{{9!}}{{0!.9!}} + \frac{{9!}}{{9!.0!}} = 2\)
c) \(C_{15}^3 - C_{14}^3 = \frac{{15!}}{{3!.12!}} - \frac{{14!}}{{3!.11!}} = \frac{{15.14.13}}{{3.2.1}} - \frac{{14.13.12}}{{3.2.1}} = 91\)
(Trả lời bởi Hà Quang Minh)
Nội dung thi đấu đôi nam nữ của giải bóng bàn cấp trường có 7 đội tham gia. Các đội thi đấu vòng tròn một lượt
a) Nội dung này có tất cả bao nhiêu trận đấu?
b) Sau giải đấu, ba đội có thành tích tốt nhất sẽ được chọn đi thi đấu cấp lên trường. Có bao nhiêu khả năng có thể xảy ra về ba đội được chọn đi thi đấu cấp lên trường?
Thảo luận (1)Hướng dẫn giảia) Các đội thi đấu vòng tròn một lượt và mỗi lượt đấu sẽ có 2 đội đấu với nhau, nên số trận đấu sẽ là số cách chọn ra 2 đội từ 7 đội, mỗi cách chọn 2 đội từ 7 đội là một tổ hợp chập 2 của 7, từ đó có tất cả số trận đấu là:
\(C_7^2 = \frac{{7!}}{{2!.5!}} = 21\) (trận)
b) Mỗi khả năng ba đội được chọn đi thi đấu cấp liên trường là một tổ hợp chập 3 của 7 đội, từ đó số khả năng có thể xảy ra của 3 đội đi thi cấp liên trường là
\(C_7^3 = \frac{{7!}}{{3!.4!}} = 35\)
(Trả lời bởi Hà Quang Minh)
Cho 6 điểm cùng nằm trên một đường tròn như hình 8
a) Có bao nhiêu đoạn thẳng có điểm đầu mút thuộc các điểm đã cho?
b) Có bao nhiêu tam giác có đỉnh thuộc các điểm đã cho?
Thảo luận (1)Hướng dẫn giảia) Một đoạn thẳng được tạo bởi 2 điểm bất kì
Nên để có một đoạn thẳng có điểm mút thuộc các điểm đã cho thì ta chọn 2 điểm bất kì từ 6 điểm đã cho, mỗi cách chọn 2 điểm từ 6 điểm đã cho là một tổ hợp chập 2 của 6, từ đó số đoạn thẳng có điểm đầu mút thuộc các điểm đã cho được tạo ra là:
\(C_6^2 = \frac{{6!}}{{2!.4!}} = 15\) (đoạn thẳng)
b) Mỗi tam giác được tạo bởi 3 điểm không thẳng hàng, nên để có một tam giác mà các đỉnh của nó là các điểm đã cho thì ta chọn 3 điểm bất kì từ 6 điểm đã cho, mỗi cách chọn 3 điểm từ 6 điểm là một tổ hợp chập 3 của 6, từ đó số tam giác có đỉnh thuộc các điểm đã cho là:
\(C_6^3 = \frac{{6!}}{{3!.3!}} = 20\) (tam giác)
(Trả lời bởi Hà Quang Minh)