Khi làm nhà kho, bác An muốn cửa số có dạng hình chữ nhật với chu vi bằng 4 m (Hình 6). Tìm kích thước khung cửa sổ sao cho diện tích cửa sổ lớn nhất (để hứng được nhiều ánh sáng nhất)?
Khi làm nhà kho, bác An muốn cửa số có dạng hình chữ nhật với chu vi bằng 4 m (Hình 6). Tìm kích thước khung cửa sổ sao cho diện tích cửa sổ lớn nhất (để hứng được nhiều ánh sáng nhất)?
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y=2\sqrt{1-x^2}+x^2\).
Thảo luận (1)Hướng dẫn giảiTập xác định: \(D = [ - 1;1]\)
\(y' = \frac{{ - 2x}}{{\sqrt {1 - {x^2}} }} + 2x = 0 \Leftrightarrow x = 0\)
Tập xác định mới: \({D_1} = ( - 1;1)\)
Bảng biến thiên:
Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_D y = y(0) = 2\) và \(\mathop {\min }\limits_D y = y( - 1) = y(1) = 1\)
(Trả lời bởi datcoder)
Khối lượng q (kg) của một mặt hàng mà cửa tiệm bán được trong một ngày phụ thuộc vào giá bán p (nghìn đồng/kg) theo công thức \(p=15-\dfrac{1}{2}q\). Doanh thu từ việc bán mặt hàng trên của cửa tiệm được tính theo công thức R = pq.
a) Viết công thức biểu diễn R theo p.
b) Tìm giá bán mỗi kilôgam sản phẩm để đạt được doanh thu cao nhất và xác định doanh thu cao nhất đó.
Thảo luận (1)Hướng dẫn giảia) Ta có: \(p = 15 - \frac{1}{2}q \Leftrightarrow q = 2(15 - p)\)
Thay vào \(R = pq\) ta được: \(R = p.2(15 - p) = - 2{p^2} + 30p\)
b) Đặt \(y = - 2{p^2} + 30p\)
Tập xác định: \(D = (0; + \infty )\)
\(y' = - 4p + 30 = 0 \Leftrightarrow p = 7,5\)
Bảng biến thiên:
Từ bảng biến thiên, ta thấy \(\mathop {\max }\limits_D y = y(7,5) = 112,5\)
Vậy nếu giá bán mỗi kilôgam sản phẩm là 7,5 nghìn đồng/kg thì sẽ đạt được doanh thu cao nhất là 112,5 nghìn đồng
(Trả lời bởi datcoder)
Hộp sữa 1 l được thiết kế dạng hình hộp chữ nhật với đáy là hình vuông cạnh x cm. Tìm x để diện tích toàn phần của hộp nhỏ nhất.
Thảo luận (1)Hướng dẫn giảiGọi chiều cao của hộp là h (cm)
Thể tích của hộp là: \(V = h.{x^2} = 1 \Leftrightarrow h = \frac{1}{{{x^2}}}\)
Diện tích toàn phần của hộp là: \(y = {S_{tp}} = {S_{xq}} + {S_{day}} = 4hx + 2{x^2} = 4.\frac{1}{{{x^2}}}.x + 2{x^2} = 2{x^2} + \frac{4}{x}\)
Tập xác định: \(D = (0; + \infty )\)
\(y' = 4x - \frac{4}{{{x^2}}} = 0 \Leftrightarrow x = 1\)
Bảng biến thiên:
Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_D y = y(1) = 6\)
Vậy x = 1 cm thì diện tích toàn phần của hộp nhỏ nhất và bằng 6 \(c{m^2}\)
(Trả lời bởi datcoder)