Bài 1. Góc lượng giác. Giá trị lượng giác của góc lượng giác

Hoạt động 1 (SGK Cánh Diều trang 5-9)

Hướng dẫn giải

Góc là hình gồm hai tia chung gốc. Mỗi góc có một số đo, đơn vị đo góc là độ hoặc radian.

Số đo của mỗi góc không vượt quá \({180^ \circ }\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 1 (SGK Cánh Diều trang 5-9)

Hướng dẫn giải

Ta có bảng chuyển đổi số đo độ và số đo radian của một số góc sau:

Độ

\({18^ \circ }\)

\(\frac{{2\pi }}{9}.\frac{{180}}{\pi } = {40^ \circ }\)

\({72^ \circ }\)

\(\frac{{5\pi }}{6}.\frac{{180}}{\pi } = {150^ \circ }\)

Radian

\(18.\frac{\pi }{{180}} = \frac{\pi }{{10}}\)

\(\frac{{2\pi }}{9}\)

\(72.\frac{\pi }{{180}} = \frac{{2\pi }}{5}\)

\(\frac{{5\pi }}{6}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 2 (SGK Cánh Diều trang 5-9)

Hướng dẫn giải

a) Chiều quay từ tia Om đến tia Ox trong Hình 3a là chiều quay ngược chiều kim đồng hồ

b) Chiều quay từ tia Om đến tia Oy trong Hình 3b là chiều quay cùng chiều kim đồng hồ.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 2 (SGK Cánh Diều trang 5-9)

Hướng dẫn giải

Trong Hình 4b, góc lượng giác là (Oz,Ot) với tia đầu là tia Oz và tia cuối là tia Ot

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 3 (SGK Cánh Diều trang 5-9)

Hướng dẫn giải

a) Trong Hình 5a, tia Om quay theo chiều dương đúng một vòng. Tia đó quét nên một góc \({360^ \circ }\)

b) Trong Hình 5b, tia Om quay theo chiều dương ba vòng và một phần tư vòng ( tức là \(3\frac{1}{4}\)vòng). Tia đó quét nên một góc \({3.360^ \circ } + \frac{1}{4}{360^ \circ } = {1170^ \circ }\)

c) Trong Hình 5x, toa Om quay theo chiều âm đúng một vòng. Tia đó quét nên một góc -\({360^ \circ }\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 3 (SGK Cánh Diều trang 5-9)

Hướng dẫn giải

Tham khảo:

Ta có \( - \frac{{5\pi }}{4} =  - \pi  + \left( { - \frac{\pi }{4}} \right)\). Góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo \( - \frac{{5\pi }}{4}\) được biểu diễn ở hình sau:

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)

Hoạt động 4 (SGK Cánh Diều trang 5-9)

Hướng dẫn giải

Quan sát Hình 7 ta thấy:

• Tia Om quay (chỉ theo chiều dương) xuất phát từ tia Ou đến trùng với tia Ov rồi quay tiếp một số vòng đến trùng với tia cuối Ov;

• Tia Om quay (chỉ theo chiều dương) xuất phát từ tia \(O'u' \equiv Ou\) đến trùng với tia \(O'v' \equiv Ov\)rồi quay tiếp một số vòng đến trùng với tỉa cuối \(O'v' \equiv Ov\).

Như vậy, sự khác biệt giữa hai góc lượng giác (Ou, Ov) và (O’u’, O’v’) chính là số vòng quay quanh điểm O. Vì vậy, sự khác biệt giữa số đo của hai góc lượng giác đó chính là bội nguyên của \({360^ \circ }\) khi hai góc đó tính theo đơn vị độ (hay bội nguyên của \(2\pi \) rad khi hai góc đó tính theo đơn vị radian).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 4 (SGK Cánh Diều trang 5-9)

Hướng dẫn giải

Ta có:

\((O'u',O'v') = (Ou,Ov) + k2\pi \,\, = \, - \frac{{4\pi }}{3}\, + k2\pi \,\,\,\,\,\,\,\,(k \in \mathbb{Z})\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 5 (SGK Cánh Diều trang 5-9)

Hướng dẫn giải

Ta có : \(\widehat {xOz} = \widehat {xOy} + \widehat {yOz}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 5 (SGK Cánh Diều trang 5-9)

Hướng dẫn giải

Theo hệ thức Chasles, ta có:

\(\begin{array}{l}(Ov,Ow) = (Ou,Ov) - (Ou,Ow) + k2\pi \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \, - \frac{{11\pi }}{4} - \frac{{3\pi }}{4} + k2\pi  =  - \frac{7}{2} + k2\pi ,\,\,(k \in \mathbb{Z})\end{array}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)