Bài 1: Dấu của tam thức bậc hai

Bài 5 (SGK Chân trời sáng tạo trang 10)

Hướng dẫn giải

\(h\left( x \right) =  - 0,1{x^2} + x - 1\) có \(\Delta  = \frac{3}{5} > 0\), có hai nghiệm phân biệt là \({x_1} = 5 - \sqrt {15} ;{x_2} = 5 + \sqrt {15} \)

Ta có bảng xét dấu như sau

 

Vậy khoảng bóng nằm trên vành rổ là \(x \in \left( {1,2;8,9} \right)\)mét
          khoảng bóng nằm dưới vành rổ là \(x \in \left( { - \infty ;1,2} \right) \cup \left( {8,9; + \infty } \right)\) mét
          khoảng bóng nằm ngang vành rổ là \(x \simeq \left\{ {1,2;8,9} \right\}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 6 (SGK Chân trời sáng tạo trang 10)

Hướng dẫn giải

Theo giải thiết ta có tam thức sau: \(f\left( x \right) = 20.15 - \left( {20 + x} \right)\left( {15 - x} \right) =   {x^2} + 5x\)

Tam thức có \(\Delta  = 25 > 0\), có hai nghiệm phân biệt \({x_1} = 0;{x_2} = -5\)

Vậy khoảng diện tích tăng lên là \(x>0\) và \(x<-5\), khoảng diện giảm đi là \(x \in(-5;0)\) và diện tích không đổi khi \(x = 0\) và \(x = -5\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 7 (SGK Chân trời sáng tạo trang 10)

Hướng dẫn giải

Yêu cầu bài toán tương đương chứng minh \(f\left( x \right) = 9{m^2} + 2m + 3 > 0\) với mọi m

Tam thức có \(\Delta  = {2^2} - 4.9.3 =  - 104 < 0\)

Áp dụng định lí về dấu của tam thức bậc hai ta có

\(\Delta  < 0\) và \(a = 9 > 0\) nên \(f\left( x \right)\) cùng dấu với với mọi m

Vậy \(f\left( x \right) = 9{m^2} + 2m + 3 > 0\) với mọi \( \Leftrightarrow 9{m^2} + 2m >  - 3\)với mọi m.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 8 (SGK Chân trời sáng tạo trang 10)

Hướng dẫn giải

a) Tam thức \(2{x^2} + 3x + m + 1\) có \(\Delta  = {3^2} - 4.2.\left( {m + 1} \right) = 1 - 8m\)

Vì \(a = 2 > 0\) nên để \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(\Delta  < 0 \Leftrightarrow 1 - 8m < 0 \Leftrightarrow m > \frac{1}{8}\)

Vậy khi \(m > \frac{1}{8}\) thì \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\)

b) Tam thức \(m{x^2} + 5x - 3\) có \(\Delta  = {5^2} - 4.m.\left( { - 3} \right) = 25 + 12m\)

Đề \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(m < 0\) và \(\Delta  = 25 + 12m \le 0 \Leftrightarrow m \le  - \frac{{25}}{{12}}\)

Vậy \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi \(m \le  - \frac{{25}}{{12}}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)