$5. Tích của một số với một vectơ

Luyện tập - Vận dụng 1 (SGK Cánh Diều trang 88,89)

Hướng dẫn giải

Ta có: \(\overrightarrow {AG} ,\overrightarrow {AM} \)là hai vecto cùng hướng và \(\left| {\overrightarrow {AG} } \right| = \frac{2}{3}\left| {\overrightarrow {AM} } \right|\)

Suy ra \(\overrightarrow {AG}  = \frac{2}{3}\overrightarrow {AM} .\) Vậy \(a = \frac{2}{3}.\)

Ta có: \(\overrightarrow {GN} ,\overrightarrow {GB} \)là hai vecto ngược hướng và \[\left| {\overrightarrow {GN} } \right| = \frac{1}{3}BN = \frac{1}{2}.\left( {\frac{2}{3}BN} \right) = \frac{1}{2}\left| {\overrightarrow {GB} } \right|\]

Suy ra \(\overrightarrow {GN}  =  - \frac{1}{2}\overrightarrow {GB} .\) Vậy \(b =  - \frac{1}{2}.\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 2 (SGK Cánh Diều trang 89,90)

Hướng dẫn giải

Ta có: \(3\left( {\overrightarrow {AB}  + 2\overrightarrow {BC} } \right) - 2\left( {\overrightarrow {AB}  + 3\overrightarrow {BC} } \right)\)\( = 3\overrightarrow {AB}  + 3.\left( {2\overrightarrow {BC} } \right) - \left[ {2\overrightarrow {AB}  + 2.\left( {3\overrightarrow {BC} } \right)} \right]\)

\[ = 3\overrightarrow {AB}  + 6.\overrightarrow {BC}  - \left( {2\overrightarrow {AB}  + 6.\overrightarrow {BC} } \right)\]\[ = 3\overrightarrow {AB}  + 6.\overrightarrow {BC}  - 2\overrightarrow {AB}  - 6.\overrightarrow {BC} \]

\[ = \left( {3\overrightarrow {AB}  - 2\overrightarrow {AB} } \right) + \left( {6.\overrightarrow {BC}  - 6.\overrightarrow {BC} } \right) = \overrightarrow {AB} .\]

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 3 (SGK Cánh Diều trang 89,90)

Hướng dẫn giải

Với điểm M bất kì ta có: \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  = 3\overrightarrow {MG} \)

Chọn M trùng A, ta được: \(\overrightarrow {AA}  + \overrightarrow {AB}  + \overrightarrow {AC}  = 3\overrightarrow {AG}  \Leftrightarrow \overrightarrow {AB}  + \overrightarrow {AC}  = 3\overrightarrow {AG} .\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 6 (SGK Cánh Diều trang 89,90)

Hướng dẫn giải

a) Nếu A, B, C thẳng hàng thì đường thẳng AB trùng đường thẳng AC, do đó hai vecto \(\overrightarrow {AB} ,\overrightarrow {AC} \) cùng phương.

b) Nếu hai vecto \(\overrightarrow {AB} ,\overrightarrow {AC} \) cùng phương thì đường thẳng AB trùng đường thẳng AC, do đó ba điểm A, B, C có thẳng hàng.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 4 (SGK Cánh Diều trang 89,90)

Hướng dẫn giải

a) Ta có: \(\overrightarrow {AC} ,\overrightarrow {AD} \)là hai vecto cùng hướng và \(\left| {\overrightarrow {AC} } \right| = \frac{3}{4}\left| {\overrightarrow {AD} } \right|\)

Suy ra \(\overrightarrow {AC}  = \frac{3}{4}\overrightarrow {AD} .\) Vậy \(k = \frac{3}{4}.\)

b) Ta có: \(\overrightarrow {BD} ,\overrightarrow {DC} \)là hai vecto ngược hướng và \(\left| {\overrightarrow {BD} } \right| = 3\left| {\overrightarrow {DC} } \right|\)

Suy ra \(\overrightarrow {BD}  =  - 3\overrightarrow {DC} .\) Vậy \(k =  - 3.\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 1 (SGK Cánh Diều trang 92)

Hướng dẫn giải

Do MQ và PN không song song với nhau nên \(\overrightarrow {MQ}  \ne k\overrightarrow {NP} \). Vậy loại B và D.

Ta có: \(\overrightarrow {MN} ,\overrightarrow {PQ} \)là hai vecto ngược hướng và \(\left| {\overrightarrow {MN} } \right| = 2\left| {\overrightarrow {PQ} } \right|\)

Suy ra \(\overrightarrow {MN}  =  - 2\overrightarrow {PQ} \)

Vậy chọn C.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2 (SGK Cánh Diều trang 92)

Hướng dẫn giải

a) Ta có: \(\overrightarrow {AC}  = \frac{1}{2}\overrightarrow {AB} \)

\( \Rightarrow \)Hai vecto \(\overrightarrow {AB} ,\overrightarrow {AC} \) cùng hướng và \(AC = \frac{1}{2}AB\).

 

Vậy C là trung điểm của AB.

b) Ta có: \(\overrightarrow {AD}  =  - \frac{1}{2}\overrightarrow {AB}  =  - \overrightarrow {AC} \)

\( \Rightarrow \)Hai vecto \(\overrightarrow {AD} ,\overrightarrow {AC} \) ngược hướng và \(AD = AC\).

 

Vậy A là trung điểm DC.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 3 (SGK Cánh Diều trang 92)

Hướng dẫn giải

a) Ta có: \(\overrightarrow {BC} ,\overrightarrow {PN} \) là hai vecto cùng hướng và \(\frac{1}{2}\left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {PN} } \right|\)

\( \Rightarrow \frac{1}{2}\overrightarrow {BC}  = \overrightarrow {PN} \)\( \Rightarrow \overrightarrow {AP}  + \frac{1}{2}\overrightarrow {BC}  = \overrightarrow {AP}  + \overrightarrow {PN}  = \overrightarrow {AN} \)

b) Ta có: \(\overrightarrow {MP} ,\overrightarrow {CA} \) là hai vecto cùng hướng và \(2\left| {\overrightarrow {MP} } \right| = \left| {\overrightarrow {CA} } \right|\)

\( \Rightarrow 2\overrightarrow {MP}  = \overrightarrow {CA} \)\( \Rightarrow \overrightarrow {BC}  + 2\overrightarrow {MP}  = \overrightarrow {BC}  + \overrightarrow {CA}  = \overrightarrow {BA} \)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 4 (SGK Cánh Diều trang 92)

Hướng dẫn giải

Ta có: \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC}  \Leftrightarrow \overrightarrow {BC}  = \overrightarrow b  - \overrightarrow a \)

Lại có: vecto \(\overrightarrow {BD} ,\overrightarrow {BC} \) cùng hướng và \(\left| {\overrightarrow {BD} } \right| = \frac{1}{3}\left| {\overrightarrow {BC} } \right|\)

\( \Rightarrow \overrightarrow {BD}  = \frac{1}{3}\overrightarrow {BC}  = \frac{1}{3}(\overrightarrow b  - \overrightarrow a )\)

Tương tự: vecto \(\overrightarrow {BE} ,\overrightarrow {BC} \) cùng hướng và \(\left| {\overrightarrow {BE} } \right| = \frac{2}{3}\left| {\overrightarrow {BC} } \right|\)

\( \Rightarrow \overrightarrow {BE}  = \frac{2}{3}\overrightarrow {BC}  = \frac{2}{3}(\overrightarrow b  - \overrightarrow a )\)

Ta có:

\(\overrightarrow {AB}  + \overrightarrow {BD}  = \overrightarrow {AD}  \Leftrightarrow \overrightarrow {AD}  = \overrightarrow a  + \frac{1}{3}(\overrightarrow b  - \overrightarrow a ) = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b \)

\(\overrightarrow {AB}  + \overrightarrow {BE}  = \overrightarrow {AE}  \Leftrightarrow \overrightarrow {AE}  = \overrightarrow a  + \frac{2}{3}(\overrightarrow b  - \overrightarrow a ) = \frac{1}{3}\overrightarrow a  + \frac{2}{3}\overrightarrow b \)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 5 (SGK Cánh Diều trang 92)

Hướng dẫn giải

a) Ta có: \(\overrightarrow {EA}  + \overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED} \)\( = 4\overrightarrow {EG}  + \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD} \)

Mà: \(\overrightarrow {GA}  + \overrightarrow {GB}  = 2\overrightarrow {GM} ;\) (do M là trung điểm của AB)

\(\overrightarrow {GC}  + \overrightarrow {GD}  = 2\overrightarrow {GN} \) (do N là trung điểm của CD)

\( \Rightarrow \overrightarrow {EA}  + \overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED}  = 4\overrightarrow {EG}  + 2(\overrightarrow {GM}  + \overrightarrow {GN} ) = 4\overrightarrow {EG} \) (do G là trung điểm của MN)

b) Vì E là trọng tâm tam giác BCD nên \(\overrightarrow {EB}  + \overrightarrow {EC}  + \overrightarrow {ED}  = \overrightarrow 0 \)

Từ ý a ta suy ra \(\overrightarrow {EA}  = 4\overrightarrow {EG} \)

c) Ta có: \(\overrightarrow {EA}  = 4\overrightarrow {EG}  \Leftrightarrow \overrightarrow {EA}  = 4.(\overrightarrow {EA}  + \overrightarrow {AG} ) \Leftrightarrow  - 3\overrightarrow {EA}  = 4\overrightarrow {AG} \)

\( \Leftrightarrow 3\overrightarrow {AE}  = 4\overrightarrow {AG} \) hay \(\overrightarrow {AG}  = \frac{3}{4}\overrightarrow {AE} \)

Suy ra A, G, E thẳng hàng và \(AG  = \frac{3}{4}AE \) nên G thuộc đoạn AE.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)