$2. Tập hợp. Các phép toán trên tập hợp

Hoạt động 7 (SGK Cánh Diều trang 15)

Hướng dẫn giải

Danh sách những môn thi đấu mà cả hai trường đã đề xuất là: Bóng bàn, Bóng đá, Bóng rổ, Cầu lông.

(Trả lời bởi Hà Quang Minh)
Thảo luận (3)

Luyện tập - Vận dụng 4 (SGK Cánh Diều trang 15)

Hướng dẫn giải

\(\begin{array}{l}A \cap B = \{ 0\} \\A \cup B = \mathbb{R}\end{array}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 8 (SGK Cánh Diều trang 15,16)

Hướng dẫn giải

Tập hợp các số thực không phải là số vô tỉ chính là tập hợp \(\mathbb{Q}\) các số hữu tỉ.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 9 (SGK Cánh Diều trang 15,16)

Hướng dẫn giải

Các phần tử thuộc tập hợp A nhưng không thuộc tập hợp B là: 2; 14.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập - Vận dụng 5 (SGK Cánh Diều trang 15,16)

Hướng dẫn giải

Ta có: \(A = \left\{ {x \in \mathbb{Z}| - 2 \le x \le 3} \right\} = \{  - 2; - 1;0;1;2;3\} \)

Và \(B = \{ x \in \mathbb{R}|{x^2} - x - 6 = 0\}  = \{  - 2;3\} \)

Khi đó:

Tập hợp \(A\,{\rm{\backslash }}\,B\) gồm các phần tử thuộc A mà không thuộc B. Vậy\(A\,{\rm{\backslash }}\,B = \{  - 1;0;1;2\} \).

 Tập hợp \(B\,{\rm{\backslash }}\,A\) gồm các phần tử thuộc B mà không thuộc A. Vậy \(B\,{\rm{\backslash }}\,A = \emptyset \)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 1 (SGK Cánh Diều trang 18)

Hướng dẫn giải

Các tập con của tập hợp X là:

+) tập hợp rỗng: \(\emptyset \)

+) Các tập con chỉ chứa 1 phần tử của tập hợp X: {a}, {b}, {c}.

+) Các tập con chứa 2 phần tử của tập hợp X: {a; b}, {b; c}, {c; a}

+) Tập con chứa 3 phần tử của tập hợp X: là tập hợp X = {a; b; c}

Chú ý

+) Mọi tập hợp X đều có 2 tập con là: \(\emptyset \) và X.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2 (SGK Cánh Diều trang 18)

Hướng dẫn giải

Ta có: 

\([2;5] = \{ x \in \mathbb R \,|\,2 \le x \le 5\} \)

\((2;5) = \{ x \in \mathbb R \,|\,2<x< 5\} \)

\([2;5) = \{ x \in \mathbb R \,|\,2 \le x < 5\} \)

\((1;5] = \{ x \in \mathbb R \,|\,1 < x \le 5\} \)

Do đó: \(\left( {2;{\rm{ }}5} \right) \subset \left[ {2;{\rm{ }}5} \right) \subset \left[ {2;5} \right] \subset \left( {1;{\rm{ }}5} \right].\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 3 (SGK Cánh Diều trang 18)

Hướng dẫn giải

Tham khảo:

a) Đặt \(A = [ - 3;7] \cap (2;5)\)

Tập hợp A là khoảng (2; 5) và được biểu diễn là:

a) Đặt \(A = [ - 3;7] \cap (2;5)\)

Tập hợp A là khoảng (2; 5) và được biểu diễn là:

b) Đặt \(B = ( - \infty ;0] \cup ( - 1;2)\)

Tập hợp B là khoảng \(( - \infty ;2)\) và được biểu diễn là:

c) Đặt \(C = \mathbb{R}\,{\rm{\backslash }}\,( - \infty ;3)\)

Tập hợp C là nửa khoảng \([3; + \infty )\) và được biểu diễn là:

d)  Đặt \(D = ( - 3;2)\,{\rm{\backslash }}\,[1;3)\)

Bỏ đi các điểm thuộc [1;3) trong khoảng (-3;2)

Tập hợp D là khoảng \(( - 3;1)\) và được biểu diễn là:

b) Đặt \(B = ( - \infty ;0] \cup ( - 1;2)\)

Tập hợp B là khoảng \(( - \infty ;2)\) và được biểu diễn là:

c) Đặt \(C = \mathbb{R}\,{\rm{\backslash }}\,( - \infty ;3)\)

Tập hợp C là nửa khoảng \([3; + \infty )\) và được biểu diễn là:

d)  Đặt \(D = ( - 3;2)\,{\rm{\backslash }}\,[1;3)\)

Bỏ đi các điểm thuộc [1;3) trong khoảng (-3;2)

Tập hợp D là khoảng \(( - 3;1)\) và được biểu diễn là:

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)

Bài 4 (SGK Cánh Diều trang 18)

Hướng dẫn giải

Ta có: \({x^2} + x - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 2\end{array} \right.\)

\( \Rightarrow A = \{ 1; - 2\} \)

Ta có: \(2{x^2} + x - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{3}{2}\\x =  - 2\end{array} \right.\)

\( \Rightarrow B = \left\{ {\frac{3}{2}; - 2} \right\}\)

Vậy \(C = A \cap B = \{  - 2\} \).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 5 (SGK Cánh Diều trang 18)

Hướng dẫn giải

a) Ta có: \(2x + 3 \ge 0 \Leftrightarrow x \ge \frac{{ - 3}}{2}\)

\( \Rightarrow \) Tập hợp E là: \(E = \left\{ {x \in \mathbb{R}|x \ge \frac{{ - 3}}{2}} \right\}\)

và \( - x + 5 \ge 0 \Leftrightarrow x \le 5\)

\( \Rightarrow \) Tập hợp G là \(G = \left\{ {x \in \mathbb{R}|x \le 5} \right\}\)

\( \Rightarrow E \cap G = \){\(x \in \mathbb{R}|\)\(x \ge \frac{{ - 3}}{2}\) và \(x \le 5\)} \( = \left\{ {x \in \mathbb{R}|\frac{{ - 3}}{2} \le x \le 5} \right\}\)

Vậy tập hợp D \( = \left\{ {x \in \mathbb{R}|\frac{{ - 3}}{2} \le x \le 5} \right\} = [\frac{{ - 3}}{2}; 5]\)

b) Ta có: \(x + 2 > 0 \Leftrightarrow x>-2\)

\( \Rightarrow E = \left\{ {x \in \mathbb{R}|x >-2 }\right\}\)

và \( 2x - 9 < 0 \Leftrightarrow x < \frac{9}{2}\)

\( \Rightarrow G = \left\{ {x \in \mathbb{R}|x < \frac{9}{2}} \right\}\)

\( \Rightarrow E \cap G = \){\(x \in \mathbb{R}|\)\(x > -2 \) và \(x < \frac{9}{2}\)} \( = \left\{ {x \in \mathbb{R}|-2<x< {9\over 2} } \right\}\)

Vậy \( D= \left\{ {x \in \mathbb{R}|-2<x< {9\over 2}} \right\}=(-2;{9\over 2})\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)