Áp dụng công thức: Nhân 2 lũy thừa cùng cơ số.
Ta có:
\(x\times x^2\times x^3\times...\times x^{100}\)
\(=x^{1+2+3+...+100}\)
\(x=5050\)
\(x.x^2.x^3...x^{100}=x^{1+2+3+...+100}\)
Đặt \(3^{1+2+3+...+100}=3^A\)
Ta có:
\(A=1+2+3+...+100\)
\(\Rightarrow A=100+99+98+...+1\)
\(\Rightarrow A=\left(1+100\right)+\left(2+99\right)+\left(3+98\right)+...+\left(100+1\right)\) ( 50 cặp số )
\(\Rightarrow A=101+101+101+...+101\) ( 50 số 101 )
\(\Rightarrow A=101.50\)
\(\Rightarrow A=5050\)
\(\Rightarrow3^A=3^{5050}\)
Vậy \(x.x^2.x^3...x^{100}=x^{5050}\)
Dấu chấm thay cho dấu nhân nhé!