Bài 13. Ứng dụng hình học của tích phân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Xét hình trụ có bán kính đáy R, có trục là trục hoành Ox, nằm giữa hai mặt phẳng x = a và x = b (a < b) (H.4.20).

a) Tính thể tích V của hình trụ.

b) Tính diện tích mặt cắt S(x) khi cắt hình trụ bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x (a ≤ x ≤ b). Từ đó tính \(\int\limits^b_aS\left(x\right)dx\) và so sánh với V.

datcoder
27 tháng 10 lúc 17:45

a) Thể tích V của hình trụ là: \(V = \pi {R^2}h = \pi {R^2}\left( {b - a} \right)\) (h là chiều cao của hình trụ)

b) Diện tích mặt cắt S(x) khi cắt hình trụ bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x là: \(S\left( x \right) = \pi {R^2}\).

Ta có: \(\int\limits_a^b {S\left( x \right)dx}  = \int\limits_a^b {\pi {R^2}dx}  = \pi {R^2}x\left| \begin{array}{l}b\\a\end{array} \right. = \pi {R^2}\left( {b - a} \right)\). Do đó, \(V = \int\limits_a^b {S\left( x \right)dx} \).