Cho hàm số \(y=\dfrac{x^3}{3}-\left(m-1\right)x^2+3\left(m-1\right)x+1\). Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số đã cho đồng biến trên khoảng \(\left(1;+\infty\right)\)
Cho hàm số :
\(f\left(x\right)=\dfrac{\tan x+\sin x}{\cot x}\) (C)
a) Tìm tập xác định của hàm số đã cho
b) Xét tính chẵn, lẻ của hàm số
c) Biến đổi biểu thức \(\dfrac{\tan x+\sin x}{\cot x}\) thành tích
d) Chứng tỏ rằng điểm \(\left(\dfrac{\pi}{3};\dfrac{9}{2}\right)\) thuộc C
Cho hàm số :
\(y=\left\{{}\begin{matrix}\dfrac{\left(x^2+4x+3\right)\left(x+2\right)}{x+1};x\ne-1\\m;x=-1\end{matrix}\right.\)
a) Tính \(y'\left(1\right)\)
b) Tìm m để hàm số liên tục tại \(x=-1\)
c) Với giá trị của m vừa tìm được ở câu b), hàm số có đạo hàm tại \(x=-1\) không ?
Tính đạo hàm của các hàm số sau :
a) \(y=\dfrac{1+x-x^2}{1-x+x^2}\)
b) \(y=\dfrac{\left(2-x^2\right)\left(3-x^3\right)}{\left(1-x\right)^2}\)
c) \(y=\cos2x-2\sin x\)
d) \(y=\dfrac{\cos x}{2\sin^2x}\)
e) \(y=\cos^2\dfrac{x}{3}\tan\dfrac{x}{2}\)
f) \(y=\sqrt{\sin\left(2x-\dfrac{\pi}{6}\right)}\)
g) \(y=\cos\dfrac{x}{x+1}\)
h) \(y=\dfrac{x^2-1}{\sin3x}\)
i) \(y=3\sin^2x\cos x+\cos^2x\)
k) \(y=\sqrt{7-4x}\cot3x\)
cho hàm số \(f\left(x\right)=x^3-3x^2+2\)
a, giải bất phương trình \(f'\left(x\right)\le0\)
b, giải phương trình \(f'=\left(x^2-3x+2\right)=0\)
c, đặt \(g\left(x\right)=f\left(1-2x\right)+x^2-x+2022\) giải bất phương trình\(g'\left(x\right)\ge0\)
Cho hàm số :
\(f\left(x\right)=\left\{{}\begin{matrix}x^2\sin\dfrac{1}{x},\left(x\ne0\right)\\A,\left(x=0\right)\end{matrix}\right.\)
Xác định A để \(f\left(x\right)\) liên tục tại \(x=0\). Với giá trị A tìm được, hàm số có đạo hàm tại \(x=0\) không ?
Cho hàm số : \(y=-x^4-x^2+6\) (C)
a) Tính \(y',y"\)
b) Tính \(y'''\left(-1\right);y'''\left(2\right)\)
c) Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến vuông góc với đường thẳng \(y=\dfrac{1}{6}x-1\)
Cho hàm số y = f(x) liên tục trên R và f(0) = f(1). Chứng minh phương trình \(f\left(x+\dfrac{1}{3}\right)-f\left(x\right)=0\) luôn có nghiệm thuộc đoạn [0;1]
Cho hàm số f(x) = \(\dfrac{x^3}{3}-mx^2+\left(m+2\right)x+3\). Có tất cả các giá trị nguyên của tham số m để f'(x) ≥ 0 với mọi thuộc R.