a) Số cây cải trồng trong vườn là \(xy\)
Nếu tăng thêm 8 luống, tức số luống sẽ là \(x + 8\); số bắp cải trồng trong 1 luống giảm đi 3 tức là số cây trong 1 luống sẽ là \(y - 3\), số bắp cải của cả vườn ít sẽ ít đi 108 cây nên ta có \(\left( {x + 8} \right)\left( {y - 3} \right) + 108 = xy\) suy ra \( - 3x + 8y = - 84.\)
Nếu giảm đi 4 luống, tức số luống sẽ là \(x - 4\), nhưng mỗi luống sẽ trồng thêm 2 cây, tức số cây trong 1 luống sẽ là \(y + 2\) thì số bắp cải cả vườn sẽ tăng thêm 64 cây nên ta có \(\left( {x - 4} \right)\left( {y + 2} \right) - 64 = xy\) suy ra \(2x - 4y = 72.\)
Nên ta có hệ phương trình \(\left\{ \begin{array}{l} - 3x + 8y = - 84\\2x - 4y = 72\end{array} \right.\)
b) Ta có \( - 3x + 8y = - 84\) suy ra \(x = \frac{{84 + 8y}}{3}\) thế vào phương trình thứ hai của hệ ta được \(2.\frac{{84 + 8y}}{3} - 4y = 72\) suy ra \(\frac{4}{3}y = 16\) nên \(y = 12.\)
Với \(y = 12\) nên \(x = \frac{{84 + 8.12}}{3} = 60.\)
Vậy số luống là 60, số cây trong 1 luống là 12 cây.