Xác định các tập hợp sau và biểu diễn chúng trên trục số :
a. \(\left(-2;3\right)\) \ \(\left(1;5\right)\)
b. \(\left(-2;3\right)\) \ [ \(-2;+\infty\))
c. \(R\) \ \(\left(2;+\infty\right)\)
d. \(R\) \ ( \(-\infty;3\) ]
Xác định các tập hợp sau và biểu diễn chúng trên trục số
a) (-2; 3) (1; 5);
b) (-2; 3) [1; 5);
c) R (2; +∞);
d) R (-∞; 3].
Xác định các tập hợp sau và biểu diễn chúng trên trục số
a) (-12; 3] ∩ [-1; 4];
b) (4, 7) ∩ (-7; -4);
c) (2; 3) ∩ [3; 5);
d) (-∞; 2] ∩ [-2; +∞).
Xác định các tập hợp sau và biểu diễn chúng trên trục số :
a. ( \(-12;3\) ] \(\cap\) [ \(-1;4\) ]
b. \(\left(4;7\right)\cap\left(-7;-4\right)\)
c. \(\left(2;3\right)\cap\) [\(3;5\) )
d. ( \(-\infty;2\) ] \(\cap\) [ \(-2;+\infty\))
Xác định các tập hợp sau và biểu diễn chúng trên trục số
a) [-3;1) ∪ (0;4];
b) (0; 2] ∪ [-1;1);
c) (-2; 15) ∪ (3; +∞);
d) (-1; 4/3) ∪ [-1; 2)
e) (-∞; 1) ∪ (-2; +∞).
Xác định các tập hợp sau và biểu diễn chúng trên trục số
\(\left(-3;5\right)\cap\left(2;4\right)\); \((-\infty;3]\cap\left[3;5\right]\); \(\left(-4;2\right)\cap[2;5)\)
Bài 1. Viết lại các tập sau về kí hiệu khoảng, đoạn, nửa khoảng. Biểu diễn chúng trên trục số:
A = { x ∈ R| x ≥ -3}
B = { x ∈ R | x < 8}
C = { x ∈ R | -1< x < 10}
D = { x ∈ R | -6 < x ≤ 8}
E = { x ∈ R | \(\dfrac{1}{2}\) ≤ x ≤ \(\dfrac{5}{2}\) }
F = { x ∈ R | x -1 < 0}
Bài 2. Viết các khoảng, đoạn sau về dạng kí hiệu tập hợp:
E=(1;+∞)
F=(-∞;6]
G=(-2;3]
H=[\(-\dfrac{3}{2}\) ;1]
Bài 1. Viết lại các tập sau về kí hiệu khoảng, đoạn, nửa khoảng. Biểu diễn chúng trên trục số:
A = { x ∈ R| x ≥ -3}
B = { x ∈ R | x < 8}
C = { x ∈ R | -1< x < 10}
D = { x ∈ R | -6 < x ≤ 8}
E = { x ∈ R | \(\dfrac{1}{2}\) ≤ x ≤ \(\dfrac{5}{2}\) }
F = { x ∈ R | x -1 < 0}
Bài 2. Viết các khoảng, đoạn sau về dạng kí hiệu tập hợp:
E=(1;+∞)
F=(-∞;6]
G=(-2;3]
H=[- \(\dfrac{3}{2}\) ;1]
xác định tập hợp sau
R\[(0;1)hợp(2;3)]
Xác định tính đúng, sai của mỗi mệnh đề sau :
a) \(\left[-3;0\right]\cap\left(0;5\right)=\left\{0\right\}\)
b) \(\left(-\infty;2\right)\cup\left(2;+\infty\right)=\left(-\infty;+\infty\right)\)
c) \(\left(-1;3\right)\cap\left(2;5\right)=\left(2;3\right)\)
d) \(\left(1;2\right)\cup\left(2;5\right)=\left(1;5\right)\)