\(x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow\left(x^2+x^3-2x^2\right)+\left(x^3+x^2-2x\right)+\left(6x^2+6x-12\right)=0\)
\(\Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=0\\x^2+x-2=0\end{matrix}\right.\)
* \(x^2+x+6=\left(x^2+x+\frac{1}{4}\right)+\frac{23}{4}=\left(x+\frac{1}{2}\right)^2+\frac{23}{4}>0\)
\(\Rightarrow x^2+x+6=0\) là vô lí
* \(x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)