\(\left\{{}\begin{matrix}x\ge0\\A=\left(\sqrt{x}-1\right)^2+1\end{matrix}\right.\)
Min A =1 khi x =1 thỏa mãn x>=0
\(\left\{{}\begin{matrix}x\ge0\\A=\left(\sqrt{x}-1\right)^2+1\end{matrix}\right.\)
Min A =1 khi x =1 thỏa mãn x>=0
tìm min P biết
P= (x+5)/(√x+2)
Tìm min của P = \(\dfrac{2-\sqrt{x}}{\sqrt{x}+1}\)
\(Cho\text{ }x,y,z\text{ }\in R\text{ thỏa}\text{ }xyz=1.\text{Tìm Min:}\)
\(P=\left(\left|xy\right|+\left|yz\right|+\left|zx\right|\right)\left[15\sqrt{x^2+y^2+z^2}-7\left(x+y-z\right)\right]+1\)
\(\)\(Cho\text{ }x,y\in R\text{ }thỏa\text{ }x^2+y^2=4.\text{Tìm Min}\)
\(A=\frac{xy}{x+y+1}\)
\(\text{Cho x,y,z }\in R\text{ thỏa mãn điều kiện }xyz=1\text{.Tìm Min:}\)
\(P=\left(\left|xy\right|+\left|yz\right|\left|zx\right|\right).\left[15\sqrt{x^2+y^2+z^2}-7\left(x+y-z\right)\right]+1\)
Cho x ; y thuộc R ; x^2 - y^2 = 4
Tìm Min : \(P=3x^4+2xy^3-12x^2+4xy\)
min F biết √x2-6x+9 + √x^2+14x+49
Tìm min: \(x+2\sqrt{x}+3\)
Cho x,y,z >0 thỏa x+y+z=\(\sqrt{2021}\)
Tìm Min:
\(P=\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}.\left(\dfrac{\sqrt{y+z}}{x}+\dfrac{\sqrt{z+x}}{y}+\dfrac{\sqrt{x+y}}{z}\right)\)