2)
\(\dfrac{2}{x-1}+\dfrac{4}{x+3}=3\\ ĐKXĐ:\left[{}\begin{matrix}x-1\ne0\\x+3\ne0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ne1\\x\ne-3\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{2\left(x+3\right)+4\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}=\dfrac{3\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}\\ \Leftrightarrow2x+6+4x-4=3\left(x^2+2x-3\right)\\ \Leftrightarrow6x+2=3x^2+6x-9\\ \Leftrightarrow3x^2+6x-6x-9-2=0\\ \Leftrightarrow3x^2-11=0\\ \Leftrightarrow x=\pm\sqrt{\dfrac{11}{3}}\left(TMĐK\right)\)