* Tóm tắt : AB = IO = 5cm ; AO = 20cm; OF = OF' = 15cm; A'O = ?; A'B' = ?
Giải
Ta có Δ ABO ∼ Δ A'B'O (g.g) => \(\dfrac{AB}{A'B'}\) = \(\dfrac{AO}{A'O}\) ( 1 )
Δ OF'I ∼ ΔA'F'B' (g.g) => \(\dfrac{OI}{A'B'}\)= \(\dfrac{OF'}{F'A'}\) => \(\dfrac{AB}{A'B'}=\dfrac{OF'}{OA'-OF'}=>\dfrac{AO}{A'O}=\dfrac{OF'}{OA'-OF'}=>\dfrac{20}{A'O}=\dfrac{15}{A'O-15}=>3A'O=4A'O-60=>A'O=60\left(cm\right)\)
=> A'B' = 15 ( cm )