Ta có bảng số liệu với giá trị đại diện:
Tuổi thọ (năm) | [1,5; 2) | [2; 2,5) | [2,5; 3) | [3; 3,5) | [3,5; 4) |
Giá trị đại diện | 1,75 | 2,25 | 2,75 | 3,25 | 3,75 |
Số linh kiện của phân xưởng 1 | 4 | 9 | 13 | 8 | 6 |
Số linh kiện của phân xưởng 2 | 2 | 8 | 20 | 7 | 3 |
Phân xưởng 1: Tổng số linh kiện: \(4 + 9 + 13 + 8 + 6 = 40\)
Giá trị trung bình \(\overline {{x_1}} = \frac{{1,75.4 + 2,25.9 + 2,75.13 + 3,25.8 + 3,75.6}}{{4 + 9 + 13 + 8 + 6}} = \frac{{223}}{{80}}\)
Phương sai: \(s_1^2 = \frac{1}{{40}}\left( {1,{{75}^2}.4 + 2,{{25}^2}.9 + 2,{{75}^2}.13 + 3,{{25}^2}.8 + 3,{{75}^2}.6} \right) - {\left( {\frac{{223}}{{80}}} \right)^2} = \frac{{2271}}{{6400}}\)
Độ lệch chuẩn: \({s_1} = \sqrt {\frac{{2271}}{{6400}}} \approx 0,6\)
Phân xưởng 2: Tổng số linh kiện: \(2 + 8 + 20 + 7 + 3 = 40\)
Giá trị trung bình \(\overline {{x_2}} = \frac{{1,75.2 + 2,25.8 + 2,75.20 + 3,25.7 + 3,75.3}}{{2 + 8 + 20 + 7 + 3}} = \frac{{221}}{{80}}\)
Phương sai: \(s_2^2 = \frac{1}{{40}}\left( {1,{{75}^2}.2 + 2,{{25}^2}.8 + 2,{{75}^2}.20 + 3,{{25}^2}.7 + 3,{{75}^2}.3} \right) - {\left( {\frac{{221}}{{80}}} \right)^2} = \frac{{1399}}{{6400}}\)
Độ lệch chuẩn: \({s_2} = \sqrt {\frac{{1399}}{{6400}}} \approx 0,47\)
Vì \(0,6 > 0,47\) nên độ phân tán của phân xưởng 1 lớn hơn độ phân tán của phân xưởng 2.