Bài 2. Một số hệ thức về cạnh và góc trong tam giác vuông

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Từ vị trí A ở phía trên một tòa nhà có chiều cao AD = 68 m, bác Duy nhìn thấy vị trí C cao nhất của một tháp truyền hình, góc tạo bởi tia AC và tia AH theo phương nằm ngang là \(\widehat{CAH}=43^o\). Bác Duy cũng nhìn thấy chân tháp tại vị trí B mà góc tạo bởi tia AB và tia AH là \(\widehat{BAH}=28^o\), điểm H thuộc đoạn thẳng BC (Hình 27). Tính khoảng cách BD từ chân tháp đến chân tòa nhà và chiều cao BC của tháp truyền hình (làm tròn kết quả đến hàng phần mười của mét).

datcoder
30 tháng 9 lúc 22:51

Xét tam giác \(ABD\) vuông tại \(D\) ta có:

\(BD = \frac{{AD}}{{\tan 28^\circ }} = \frac{{68}}{{\tan 28^\circ }} \approx 127,9\left( m \right)\).

Vì AHBD là hình chữ nhật nên \(BH = AD = 68m\), \(AH = BD\).

Xét tam giác \(ACH\) vuông tại \(H\) ta có:

\(CH = AH.\tan 43^\circ  \approx 127,9.\tan 43^\circ  \approx 119,3\left( m \right)\).

Chiều cao \(BC\) của tháp truyền hình là: \(BC = CH + BH \approx 119,3 + 68 = 187,3\left( m \right)\).