Trong thuyết tương đối, khối lượng m (kg) của một vật khi chuyển động với vận tốc v (m/s) được cho bởi công thức
\(m=\dfrac{m_0}{\sqrt{1-^{v^2}_{c^2}}}\)
trong đó m0 (kg) là khối lượng của vật khi đứng yên, c (m/s) là vận tốc của ánh sáng trong chân không (Theo sách Vật lí đại cương, NXB Giáo dục Việt Nam, 2016).
a) Viết lại công thức tính khối lượng m dưới dạng không có căn thức ở mẫu.
b) Tính khối lượng m theo m0 (làm tròn đến chữ số thập phân thứ ba) khi vật chuyển động với vận tốc
a) Ta có:
\(m = \frac{{{m_0}}}{{\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} }} = \frac{{{m_0}\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} }}{{1 - \frac{{{v^2}}}{{{c^2}}}}}\)
b) Với \(v = \frac{1}{{10}}c\), ta có
\(\frac{{{v^2}}}{{{c^2}}} = {\left( {\frac{1}{{10}}} \right)^2} = \frac{1}{{100}}\)
Suy ra \(1 - \frac{v^2}{c^2} = 1 - \frac{1}{100} = \frac{99}{100}\)
Nên \(m = \frac{{{m_0}\sqrt {1 - \frac{{{v^2}}}{{{c^2}}}} }}{{1 - \frac{{{v^2}}}{{{c^2}}}}}\) \(= \frac{{{m_0}\sqrt {\frac{{{99}}}{{{100}}}} }}{{{\frac{{{99}}}{{{100}}}}}}\) \( = \frac {m_0\sqrt{\frac{9}{100}.11}}{\frac{99}{100}}\) \(= \frac {m_0.\frac{3}{10}.\sqrt{11}}{\frac{99}{100}}\) \(= m_0\frac{3}{10}.\sqrt{11}.\frac{100}{99}\) \(=\frac{m_0.10.\sqrt{11}}{33}\) \( \approx 1,005m_0 (kg)\)