Bài 2: Công thức xác suất toàn phần và công thức Bayes

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Trong một trường học, tỉ lệ học sinh nữ là 52%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ nghệ thuật lần lượt là 18% và 15%. Chọn ngẫu nhiên 1 học sinh của trường.

a) Tính xác suất học sinh được chọn có tham gia câu lạc bộ nghệ thuật.

b) Biết rằng học sinh được chọn có tham gia câu lạc bộ nghệ thuật. Tính xác suất học sinh đó là nam.

datcoder
30 tháng 10 lúc 14:19

Gọi \(A\) là biến cố “Chọn được 1 học sinh nữ”, \(B\) là biến cố “Chọn được 1 học sinh tham gia câu lạc bộ nghệ thuật”.

Theo đề bài, ta có \(P\left( A \right) = 0,52 \Rightarrow P\left( {\bar A} \right) = 1 - 0,52 = 0,48\); \(P\left( {B|A} \right) = 0,18\) và \(P\left( {B|\bar A} \right) = 0,15\).

a) Xác suất học sinh được chọn có tham gia câu lạc bộ nghệ thuật là:

\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right) = 0,52.0,18 + 0,48.0,15 = 0,1656\)

b) Xác suất học sinh được chọn là nam, biết rằng em đó có tham gia câu lạc bộ nghệ thuật là:

\(P\left( {\bar A|B} \right) = \frac{{P\left( {\bar A} \right).P\left( {B|\bar A} \right)}}{{P\left( B \right)}} = \frac{{0,48.0,15}}{{0,1656}} = \frac{{10}}{{23}}.\)