Bài 17. Phương trình mặt cầu

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Trong không gian Oxyz, viết phương trình của mặt cầu (S) có tâm I(0; 3; −1) và có bán kính bằng khoảng cách từ I đến mặt phẳng (P): 3x + 2y – z = 0.

datcoder
27 tháng 10 lúc 22:19

Ta có: \(d\left( {I;\left( P \right)} \right) = \frac{{\left| {3.0 + 2.3 - 1.\left( { - 1} \right)} \right|}}{{\sqrt {{3^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{7}{{\sqrt {14} }}\)  nên bán kính của mặt cầu (S) là \(R = \frac{7}{{\sqrt {14} }}\).

Do đó, phương trình của mặt cầu (S) có tâm \(I\left( {0;3; - 1} \right)\) và có bán kính \(R = \frac{7}{{\sqrt {14} }}\) là: \({x^2} + {\left( {y - 3} \right)^2} + {\left( {z + 1} \right)^2} = \frac{7}{2}\)