Bài 7. Hệ trục tọa độ trong không gian

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hà Quang Minh

Trong không gian Oxyz, cho hai điểm \(M\left( {x;{\rm{ }}y;{\rm{ }}z} \right)\) và \(N\left( {x'y'z'} \right)\).

a) Hãy biểu diễn hai vectơ \(\overrightarrow {OM} \) và \(\overrightarrow {ON} \) qua các vectơ \(\overrightarrow i ,\overrightarrow j \) và \(\overrightarrow k \).

b) Xác định tọa độ của vectơ \(\overrightarrow {MN} \).

a) Ta có: \(\overrightarrow {OM}  = x.\overrightarrow i  + y.\overrightarrow j  + z.\overrightarrow k \), \(\overrightarrow {ON}  = x'.\overrightarrow i  + y'.\overrightarrow j  + z'.\overrightarrow k \)

b) Ta có: \(\overrightarrow {MN}  = \overrightarrow {ON}  - \overrightarrow {OM}  = \left( {x'.\overrightarrow i  + y'.\overrightarrow j  + z'.\overrightarrow k } \right) - \left( {x.\overrightarrow i  + y.\overrightarrow j  + z.\overrightarrow k } \right)\)

\( = \left( {x' - x} \right).\overrightarrow i  + \left( {y' - y} \right).\overrightarrow j  + \left( {z' - z} \right).\overrightarrow k \)

Do đó, \(\overrightarrow {MN}  = \left( {x' - x;y' - y;z' - z} \right)\).