Cho mặt cầu \(S\left(O;r\right)\) tiếp xúc với mặt phẳng (P) tại I. Gọi M là một điểm nằm trên mặt cầu nhưng không phải là điểm đối xứng với I qua tâm O. Từ M ta kẻ hai tiếp tuyến của mặt cầu cắt (P) tại A và B.
Chứng minh rằng : \(\widehat{AMB}=\widehat{AIB}\) ?
Trong không gian với hệ trục tọa độ Oxyz, xét các điểm A(0;0;1), B(m;0;0) C(0;n;0) và D(1;1;1) với m>0,n>0 và m+n=1. Biết rằng khi m,n thay đổi, tồn tại một mặt cầu cố định tiếp xúc với mặt phẳng (ABC) và đi qua D. Tính bán kính R của mặt cầu đó?
A.R=1
B.R=\(\dfrac{\sqrt{2}}{2}\)
C.R=\(\dfrac{3}{2}\)
D.R=\(\dfrac{\sqrt{3}}{2}\)
Cho mặt cầu (S) có đường kính 10 cm và điểm A nằm ngoài (S). Qua A dựng mặt phẳng (P) cắt (S) theo một đường tròn có bán kính 4cm. Số các mặt phẳng (P) là
A:Vô số C:2
B:0 D:1
Trong không gian Oxyz cho đường thẳng d: \(\dfrac{x-1}{2}=\dfrac{y+1}{1}=\dfrac{z-1}{2}\) và điểm I(1;0;3).Tính khoảng cách từ điểm I đến đường thẳng d .Viết phương trình mặt cầu (S) có tâm I cắt d tại hai điểm A,B sao cho tam giác IAB vuông tại I
trong không gian 0xy cho mp (P): 3x+6y-2z-22=0 mặt cầu (S): x^2+y^2+z^2-2x-2z-m^2=0. Tìm m để (P) cắt (S) theo giao tuyến là đường tròn (C) có chu vi =2 pi
làm hộ mình với ạ
Cho hình cầu tâm O bán kính r. Lấy một điểm A trên mặt cầu và gọi \(\left(\alpha\right)\) là mặt phẳng đi qua A sao cho góc giữa OA và \(\left(\alpha\right)\) bằng \(30^0\)
a) Tính diện tích của thiết diện tạo bơi \(\left(\alpha\right)\) và hình cầu
b) Đường thẳng \(\Delta\) đi qua A vuông góc với mặt phẳng \(\left(\alpha\right)\) cắt mặt cầu tại B. Tính độ dài đoạn AB ?
Cho mặt cầu tâm O, bán kính r. Gọi \(\left(\alpha\right)\) là mặt phẳng cách tâm O một khoảng h \(\left(0< h< r\right)\) và cắt mặt cầu theo đường tròn (C). Đường thẳng d đi qua một điểm A cố định trên (C) và vuông góc với mặt phẳng \(\left(\alpha\right)\) cắt mặt cầu tại một điểm B. Gọi CD là một đường kính di động của (C)
a) Chứng minh các tổng \(AD^2+BC^2\) và \(AC^2+BD^2\) có giá trị không đổi
b) Với vị trí nào của CD thì diện tích tam giác BCD lớn nhất
c) Tìm tập hợp các điểm H, hình chiếu vuông góc của B trên CD khi CD chuyển động trên đường tròn (C)
Hình chóp S.ABC là hình chóp tam giác đều, có cạnh đáy bằng a và cạnh bên bằng \(a\sqrt{2}\). Một mặt cầu đi qua đỉnh A và tiếp xúc với hai cạnh SB, SC tại trung điểm của mỗi cạnh
a) Chứng minh rằng mặt cầu đó đi qua trung điểm của AB và AC
b) Gọi giao điểm thứ hai của mặt cầu với đường thẳng SA là D. Tính độ dài của AD và SD
Trong mặt phẳng \(\left(\alpha\right)\) cho hình vuông ABCD có cạnh bằng a. Trên đường thẳng \(Ax\) vuông góc \(\left(\alpha\right)\) ta lấy một điểm S tùy ý, dựng mặt phẳng \(\left(\beta\right)\) đi qua A và vuông góc với đường thẳng SC. Mặt phẳng \(\left(\beta\right)\) cắt SB, SC, SD lần lượt tại B', C' , C'.
a) Chứng minh rằng các điểm A, B, C, D, B', C', D' luôn luôn thuộc một mặt cầu cố định
b) Tính diện tích của mặt cầu đó và tính thể tích khối cầu được tạo thành