Trong không gian Oxyz, cho ba điểm M(−4; 3; 3), N(4; −4; 2) và P(3; 6; −1).
a) Tìm tọa độ của các vectơ \(\overrightarrow{MN},\overrightarrow{MP}\), từ đó chứng minh rằng ba điểm M, N, P không thẳng hàng.
b) Tìm tọa độ của vectơ \(\overrightarrow{NM}+\overrightarrow{NP}\), từ đó suy ra tọa độ của điểm Q sao cho tứ giác MNPQ là hình bình hành.
c) Tính chu vi của hình bình hành MNPQ.
a) Ta có: \(\overrightarrow {MN} = \left( {4 - \left( { - 4} \right); - 4 - 3;2 - 3} \right) = \left( {8; - 7; - 1} \right),\overrightarrow {MP} \left( {7;3; - 4} \right)\)
Vì \(\frac{8}{7} \ne \frac{{ - 7}}{3} \ne \frac{{ - 1}}{{ - 4}}\) nên hai vectơ \(\overrightarrow {MN} ,\overrightarrow {MP} \) không cùng phương. Do đó, ba điểm M, N, P không thẳng hàng.
b)
Ta có: \(\overrightarrow {NM} \left( { - 8;7;1} \right),\overrightarrow {NP} \left( { - 1;10; - 3} \right)\).
Suy ra: \(\overrightarrow {NM} + \overrightarrow {NP} = \left( {\left( { - 8} \right) + \left( { - 1} \right);7 + 10;1 - 3} \right) = \left( { - 9;17; - 2} \right)\)
Gọi tọa độ điểm Q là Q(x; y; z), ta có: \(\overrightarrow {NQ} \left( {x - 4;y + 4;z - 2} \right)\)
Để tứ giác MNPQ là hình bình hành thì \(\overrightarrow {NM} + \overrightarrow {NP} = \overrightarrow {NQ} \)
Suy ra: \(\left\{ \begin{array}{l}x - 4 = - 9\\y + 4 = 17\\z - 2 = - 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = - 5\\y = 13\\z = 0\end{array} \right.\). Vậy \(Q\left( { - 5;13;0} \right)\)
c) Ta có: \(NM = \left| {\overrightarrow {NM} } \right| = \sqrt {{{\left( { - 8} \right)}^2} + {7^2} + {1^2}} = \sqrt {114} \), \(NP = \left| {\overrightarrow {NP} } \right| = \sqrt {{{\left( { - 1} \right)}^2} + {{10}^2} + {{\left( { - 3} \right)}^2}} = \sqrt {110} \)
Vậy chu vi hình bình hành MNPQ là: \(C = 2\left( {NP + NM} \right) = 2\left( {\sqrt {114} + \sqrt {110} } \right)\)