Gọi tên 2 sợi dây lần lượt là x,y,z
Ta có PT :
\(\left\{{}\begin{matrix}x+y+z=226\\x\left(1-\frac{1}{3}\right)=y\left(1-\frac{1}{5}\right)=z\left(1-\frac{2}{9}\right)\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y+z=226\\\frac{2x}{3}=\frac{4y}{5}=\frac{7z}{9}\left(x45\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+y+z=226\\30x=36y=35z=k\left(1\right)\end{matrix}\right.\)
=> \(\frac{k}{30}+\frac{k}{36}+\frac{k}{35}=226\left(x1260\right)\)
=> \(42k+35k+36k=284760\)
=> \(113k=284760\)
=> \(k=2520\left(2\right)\)
Từ (1) và (2)
=> \(\left\{{}\begin{matrix}30x=2520\\36y=2520\\35z=2520\end{matrix}\right.=>\left\{{}\begin{matrix}x=84\\y=70\\z=72\end{matrix}\right.\)
Vậy...