TK :
1-4+7-10+...-208+301-304+307
=(1-4)+(7-10)+...+(205-208)+(301-304)+307 (có tất cả 51 cặp)
=(-3)+(-3)+...+(-3)+(-3)+307
=(-3).51+307
=(-153)+307=154
TK :
1-4+7-10+...-208+301-304+307
=(1-4)+(7-10)+...+(205-208)+(301-304)+307 (có tất cả 51 cặp)
=(-3)+(-3)+...+(-3)+(-3)+307
=(-3).51+307
=(-153)+307=154
a) 47 – [(45.24 – 52.12):14] e) 10 – [(82 – 48).5 + (23.1 + 8) -12] : 28
b) 2010 – 2000 : [486 – 2(72 – 6)] g) 128 – [68 + 8(37 – 35)2] : 4
c) 568 – {5[143 – (4 – 1)2] + 10} : 10
d) 307 – [(180 – 160) : 22 + 9] : 2 h) 205 – [1200 – (42 – 2.3)3] : 40
giúp
Tính tổng :
a) 25 + (–17) –15
b) (–20) + (–7)
c) S1 = 1+ (–2) + 3 + (–4) +…+ 2001 + (–2002)
d) S2 = 1+ (–3) + 3 + (–7) +…+ 1999 + (–2002)
e) S3 = 1+ (–2) + (–3)+ 4+5+(–6)+( –7)+8+…+1997+(–1998)+( –1999)+2000
f) (325 – 47)+(175 – 53)
g) (756 – 217) – (183 – 44)
h) (–2104) – 2015 + 2016
mai nộp rồi
Cho tổng gồm 2014 số hạng: \(S=\dfrac{1}{4}+\dfrac{2}{4^2}+\dfrac{3}{4^3}+\dfrac{4}{4^4}+...+\dfrac{2014}{4^{2014}}\). Chứng minh rằng \(S< \dfrac{1}{2}\)
1.Tính nhanh:
A= \(\dfrac{\dfrac{2}{3}-\dfrac{1}{4}+\dfrac{5}{11}}{\dfrac{5}{12}+1-\dfrac{7}{11}}\)
2. Cho: B =\(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{19}\) .Hãy chứng tỏ rằng B > 1.
3. Rút gọn:
a) C= \(\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)....\left(1-\dfrac{1}{20}\right)\)
b) D= \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2012}}\)
4. So sánh: E=\(\dfrac{20^{10}+1}{20^{10}-1}\) và F =\(\dfrac{20^{10}-1}{20^{10}-3}\)
5. Tính giá trị của biểu thức:
M= \(\dfrac{\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{11}}\)
Bài 1 : Thực hiện phép tính ( tính hợp lý nếu có thể )
a ) \(\dfrac{1}{12}+\dfrac{3}{4}\)
b ) \(\dfrac{-4}{7}.1\dfrac{1}{2}\)
c )\(\dfrac{7}{9}+\left(\dfrac{2}{3}+\dfrac{-7}{9}\right)\)
d )\(\dfrac{2}{3}-\dfrac{1}{3}:\dfrac{3}{4}\)
e )\(\dfrac{-7}{25}.\dfrac{11}{13}+\dfrac{-7}{25}.\dfrac{2}{13}\)
g )\(2\dfrac{2}{5}.0,25-\left(\dfrac{11}{20}+75\%\right):\dfrac{13}{5}\)
Cho: S=\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{2018^2}\)chứng tỏ S< \(\dfrac{1}{4}\)
\(\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{0,375-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)
a. 2/3x-1/2=1/10
b. 39/7:x=13
c. (14/5x-50):2/3=51
d. (x+1/2)(2/3-2x)=0
e. 2/3x-1/2x=5/12
g. (x.44/7+3/7)11/5-3/7=-2
h. x.13/4+(-7/6)x-5/3=5/12
i.93/17:x+(-4/17):x+22/7:52/3=4/11
j. 17/2-|2x-3/4|=-7/4
k. (x+1/5)^2+17/25=26/25
l. -32/27-(3x-7/9)^3=-24/27
Cho tập hợp A = {1; \(\frac{16}{17};\frac{8}{9};\frac{18}{17};\frac{3}{5};\frac{7}{9};\frac{7}{10}\)}
Tìm m ∈ A, n ∈ A, m ≠ n để tổng m +n có giá trị :
nhỏ nhất; lớn nhất.