a) \(S_1=1+2+3+4+......+999\)
\(\Rightarrow S_1=\dfrac{\left(999+1\right).\left[\left(999-1\right):1+1\right]}{2}\)
\(\Rightarrow S_1=\dfrac{1000.\left(998+1\right)}{2}\)
\(\Rightarrow S_1=\dfrac{1000.999}{2}\)
\(\Rightarrow S_1=\dfrac{999000}{2}\)
\(\Rightarrow S_1=499500\)
b) \(S_2=10+12+14+......+2010\)
\(\Rightarrow S_2=\dfrac{\left(2010+10\right).\left[\left(2010-10\right):2+1\right]}{2}\)
\(\Rightarrow S_2=\dfrac{2020.\left(2000:2+1\right)}{2}\)
\(\Rightarrow S_2=\dfrac{2020.\left(1000+1\right)}{2}\)
\(\Rightarrow S_2=\dfrac{2020.1001}{2}\)
\(\Rightarrow S_2=\dfrac{2022020}{2}\)
\(\Rightarrow S_2=1011010\)
c) \(S_3=21+23+25+.......1001\)
\(\Rightarrow S_3=\dfrac{\left(1001+21\right).\left[\left(1001-21\right):2+1\right]}{2}\)
\(\Rightarrow S_3=\dfrac{1022.\left(980:2+1\right)}{2}\)
\(\Rightarrow S_3=\dfrac{1022.\left(490+1\right)}{2}\)
\(\Rightarrow S_3=\dfrac{1022.491}{2}\)
\(\Rightarrow S_3=\dfrac{501802}{2}\)
\(\Rightarrow S_3=250901\)
d) \(S_5=1+4+7+......+79\)
\(\Rightarrow S_5=\dfrac{\left(79+1\right).\left[\left(79-1\right):3+1\right]}{2}\)
\(\Rightarrow S_5=\dfrac{80.\left(78:3+1\right)}{2}\)
\(\Rightarrow S_5=\dfrac{80.\left(26+1\right)}{2}\)
\(\Rightarrow S_5=\dfrac{80.27}{2}\)
\(\Rightarrow S_5=\dfrac{2160}{2}\)
\(\Rightarrow S_5=1080\)
e) \(S_7=15+25+35+45+......+115\)
\(\Rightarrow S_7=\dfrac{\left(115+15\right).\left[\left(115-15\right):10+1\right]}{2}\)
\(\Rightarrow S_7=\dfrac{130.\left(100:10+1\right)}{2}\)
\(\Rightarrow S_7=\dfrac{130.\left(10+1\right)}{2}\)
\(\Rightarrow S_7=\dfrac{130.11}{2}\)
\(\Rightarrow S_7=\dfrac{1430}{2}\)
\(\Rightarrow S_7=715\)