C/minh rằng tổng của 100 số hạng đầu tiên của dãy sau nhỏ hơn \(\dfrac{1}{4}\):
\(\dfrac{1}{5},\dfrac{1}{45},\dfrac{1}{117},\dfrac{1}{221},\dfrac{1}{357}\)
Ai làm nhanh mà đúng mik tick nà!
Bài 1:
\(a)5\dfrac{1}{20}+\dfrac{8}{9}-\dfrac{15}{25}+\dfrac{75}{-18}\)
\(b)\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
\(c)\dfrac{6}{7}+\dfrac{5}{7}:5-\dfrac{8}{9}.\dfrac{6}{7}+\dfrac{5}{8}:5-\dfrac{3}{16}.\left(-2\right)^2\)
BT1: CMR:
a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)
b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)
c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)
d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)
e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)
BT2: Tính tổng
a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)
BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
CMR: 1 < S < 2
CMR:\(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}+\dfrac{1}{195}< x+\dfrac{1}{30}\)
BT1: Chứng tỏ rằng: \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}>\dfrac{5}{6}\)
BT2: Điền vào tổng sau số còn thiếu sau đó tính tổng:
\(\dfrac{1}{5}+\dfrac{1}{45}+\dfrac{1}{117}+...+\dfrac{1}{1517}\)
Bài 1 : Tính
a) A= \(\dfrac{4}{7}+\dfrac{3}{4}+\dfrac{2}{7}+\dfrac{5}{4}+\dfrac{1}{7}\)
b) B= \(\dfrac{-4}{12}+\dfrac{18}{45}+\dfrac{-6}{9}+\dfrac{-21}{35}+\dfrac{6}{30}\)
@Xuân Tuấn Trịnh; ........
BT2: Tính nhanh
9) (\(\left(5+\dfrac{1}{5}-\dfrac{2}{9}\right)-\left(2-\dfrac{1}{23}-2\dfrac{3}{35}+\dfrac{5}{6}\right)-\left(8+\dfrac{2}{7}-\dfrac{1}{18}\right)\)
10)\(\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{64}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
I. tính
1. \(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)
2.\(\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}+\dfrac{2}{143}\)
II. tìm x
\(1\dfrac{3}{5}+\left(\dfrac{\dfrac{2}{171}}{\dfrac{5}{171}}+\dfrac{\dfrac{2}{373}}{\dfrac{5}{373}}\right)X=\dfrac{16}{5}\)
Chứng minh rằng :
a) \(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{100!}< 1\)
b) \(\dfrac{9}{10!}+\dfrac{9}{11!}+\dfrac{9}{12!}+...+\dfrac{9}{1000!}< \dfrac{1}{9!}\)