Bài 3. Căn thức bậc hai và căn thức bậc ba của biểu thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quốc Đạt

Tính giá trị của mỗi căn thức bậc hai sau:

a) \(\sqrt{17-x^2}\) tại x = 1; x = - 3; x = \(2\sqrt{2}\);

b) \(\sqrt{x^2+x+1}\) tại x = 0; x = -1; x = - 7.

Nguyễn Quốc Đạt
30 tháng 9 2024 lúc 22:25

a. Thay \(x = 1\) vào biểu thức, ta được: \(\sqrt {17 - {1^2}}  = \sqrt {17 - 1}  = \sqrt {16}  = 4\).

Thay \(x =  - 3\) vào biểu thức, ta được: \(\sqrt {17 - {{\left( { - 3} \right)}^2}}  = \sqrt {17 - 9}  = \sqrt 8 \).

Thay \(x = 2\sqrt 2 \) vào biểu thức, ta được: \(\sqrt {17 - {{\left( {2\sqrt 2 } \right)}^2}}  = \sqrt {17 - 8}  = \sqrt 9  = 3\).

b. Thay \(x = 0\) vào biểu thức, ta được: \(\sqrt {{0^2} + 0 + 1}  = \sqrt 1  = 1\).

Thay \(x =  - 1\) vào biểu thức, ta được: \(\sqrt {{{\left( { - 1} \right)}^2} + \left( { - 1} \right) + 1}  = \sqrt 1  = 1\).

Thay \(x =  - 7\) vào biểu thức, ta được: \(\sqrt {{{\left( { - 7} \right)}^2} + \left( { - 7} \right) + 1}  = \sqrt {49 - 7 + 1}  = \sqrt {43} \).