Bài tập cuối chương 4

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quốc Đạt

Tính đạo hàm của \(F\left(x\right)=\ln\left(x+\sqrt{x^2+1}\right)\). Từ đó suy ra nguyên hàm của \(f\left(x\right)=\dfrac{1}{\sqrt{x^2+1}}\).

Nguyễn Quốc Đạt
29 tháng 10 2024 lúc 23:12

Ta có \(F'\left( x \right) = \left[ {\ln \left( {x + \sqrt {{x^2} + 1} } \right)} \right]' = \frac{{\left( {x + \sqrt {{x^2} + 1} } \right)'}}{{x + \sqrt {{x^2} + 1} }} = \frac{{1 + \frac{{\left( {{x^2} + 1} \right)'}}{{2\sqrt {{x^2} + 1} }}}}{{x + \sqrt {{x^2} + 1} }} = \frac{{1 + \frac{x}{{\sqrt {{x^2} + 1} }}}}{{x + \sqrt {{x^2} + 1} }}\)

\( = \frac{{\sqrt {{x^2} + 1}  + x}}{{\left( {x + \sqrt {{x^2} + 1} } \right).\sqrt {{x^2} + 1} }} = \frac{1}{{\sqrt {{x^2} + 1} }} = f\left( x \right)\)

Như vậy \(F\left( x \right) = \ln \left( {x + \sqrt {{x^2} + 1} } \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{{\sqrt {{x^2} + 1} }}\).

Do đó \(\int {f\left( x \right)dx}  = F\left( x \right) + C \Rightarrow \int {\frac{1}{{\sqrt {{x^2} + 1} }}dx}  = \ln \left( {x + \sqrt {{x^2} + 1} } \right) + C\)