Bài 1. Đường tròn ngoại tiếp tam giác. Đường tròn nội tiếp tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Tính bán kính đường tròn ngoại tiếp tam giác ABC vuông tại A với AB = 5cm, AC = 12cm.

datcoder
14 tháng 10 lúc 23:08

Gọi (O) là đường tròn ngoại tiếp tam giác ABC.

Xét tam giác ABC vuông tại A có:

\(\begin{array}{l}B{C^2} = A{B^2} + A{C^2}(Pytago)\\B{C^2} = {5^2} + {12^2}\\B{C^2} = 169\\BC = 13cm\end{array}\)

Vì ABC vuông tại A nên tâm O của đường tròn ngoại tiếp là trung điểm của cạnh huyền BC (định lý)

Vậy bán kính \(OB = OC = \frac{{BC}}{2} = \frac{{13}}{2}cm.\)