a) \(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x^2+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x^2=-1\end{matrix}\right.\)
suy ra x=1 do \(x^2=-1\)ko có giá trị thỏa mãn
b, \(xy+3x-2y=11\)
\(\Rightarrow x\left(y+3\right)-2y-6=5\)
\(\Rightarrow x\left(y+3\right)-2\left(y+3\right)=5\)
\(\Rightarrow\left(x-2\right)\left(y+3\right)=5\)
Ta có bảng sau: \(\left(x;y\in Z\right)\)
\(x-2\) | 1 | -1 | 5 | -5 |
\(y+3\) | 5 | -5 | 1 | -1 |
x | 3 | 1 | 7 | -3 |
y | 2 | -8 | -2 | -4 |
Vậy...