Bài 3: Đường tiệm cận của đồ thị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quốc Đạt

Tìm tiệm cận ngang của đồ thị hàm số \(y=\dfrac{3x-2}{x+1}\).

Nguyễn Quốc Đạt
27 tháng 9 2024 lúc 0:01

Tập xác định \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).

Ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \frac{{3x - 2}}{{x + 1}} = 3\\\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \frac{{3x - 2}}{{x + 1}} = 3\end{array} \right.\).

Vậy đường thẳng \(y = 3\) là tiệm cận ngang của đồ thị hàm số đã cho