Bài 3: Đường tiệm cận của đồ thị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Tìm tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x^2+3x}{x-5}\).

datcoder
27 tháng 9 lúc 0:02

Tập xác định \(D = \mathbb{R}\backslash \left\{ 5 \right\}\).

Ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {5^ - }} y = \mathop {\lim }\limits_{x \to {5^ - }} \frac{{{x^2} + 3x}}{{x - 5}} =  - \infty \\\mathop {\lim }\limits_{x \to {5^ + }} y = \mathop {\lim }\limits_{x \to {5^ + }} \frac{{{x^2} + 3x}}{{x - 5}} =  + \infty \end{array} \right.\)

Vậy đường thẳng \(x = 5\) là tiệm cận đứng của đồ thị hàm số đã cho