Tập xác định \(D = \mathbb{R}\backslash \left\{ 5 \right\}\).
Ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {5^ - }} y = \mathop {\lim }\limits_{x \to {5^ - }} \frac{{{x^2} + 3x}}{{x - 5}} = - \infty \\\mathop {\lim }\limits_{x \to {5^ + }} y = \mathop {\lim }\limits_{x \to {5^ + }} \frac{{{x^2} + 3x}}{{x - 5}} = + \infty \end{array} \right.\)
Vậy đường thẳng \(x = 5\) là tiệm cận đứng của đồ thị hàm số đã cho
Đúng 0
Bình luận (0)