Tham khảo:
Đỉnh S có tọa độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 6)}}{{2.2}} = \frac{3}{2};{y_S} = 2.{\left( {\frac{3}{2}} \right)^2} - 6.\frac{3}{2} + 11 = \frac{{13}}{2}.\)
Hay \(S\left( {\frac{3}{2};\frac{{13}}{2}} \right).\)
Vì hàm số bậc hai có \(a = 2 > 0\) nên ta có bảng biến thiên sau:
Hàm số đồng biến trên khoảng \((\frac{3}{2}; + \infty )\) và nghịch biến trên khoảng \(( - \infty ;\frac{3}{2})\)
Hàm số đạt giá trị nhỏ nhất bằng \(\frac{{13}}{2}\) khi \(x = \frac{3}{2}\)
Do đó hàm số không thể đạt giá trị bằng -1 vì \( - 1 < \frac{{13}}{2}.\)