bạn nên đưa hàm số về dạng y=|sin8x| +3 rồi mới đánh giá
ta bắt đầu từ \(0\le\left|sin8x\right|\le1\)
\(\Leftrightarrow0+3\le y=\left|sin8x\right|+3\le1+3\)
\(3\le y\le4\)
vậy GTLN =4 đạt được khi sin8x =1
GTNN=3 đạt được khi sin8x =0
bạn nên đưa hàm số về dạng y=|sin8x| +3 rồi mới đánh giá
ta bắt đầu từ \(0\le\left|sin8x\right|\le1\)
\(\Leftrightarrow0+3\le y=\left|sin8x\right|+3\le1+3\)
\(3\le y\le4\)
vậy GTLN =4 đạt được khi sin8x =1
GTNN=3 đạt được khi sin8x =0
tìm giá trị lớn nhất , nhỏ nhất của hàm số y=\(\left|2\sin4x.\cos4x\right|+3\)
tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y=\sqrt{5\sin^2x+1}+\sqrt{5\cos^2x+1}\) ?
tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=\(\sqrt{5sin^2x+1}+\sqrt{5cos^2x+1}\) ?
giá trị nhỏ nhất của hàm số \(y=-x+\cos x\) trên \(\left[0;\frac{\pi}{2}\right]\) là bao nhiêu ?
tìm giá trị lớn nhất , nhỏ nhất của hàm số y=|2sin4x.cos4x|+3
tìm giá trị lớn nhất , nhỏ nhất của hàm số y=|2sin4x.cos4x|+3
tìm giá trị lớn nhất , nhỏ nhất của hàm số y=|2sin4x.cos4x|+3
tìm giá trị lớn nhất , nhỏ nhất của hàm số y=|2sin4x.cos4x|+3
tìm giá trị lớn nhất , nhỏ nhất của hàm số y=|2sin4x.cos4x|+3