Bài 2: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số:

a) f(x) = 2x3 – 9x2 + 12x + 1 trên đoạn [0; 3];

b) g(x) = \(x+\dfrac{1}{x}\) trên khoảng (0;5 );

c) h(x) = \(x\sqrt{2-x^2}\).

datcoder
28 tháng 10 lúc 6:57

a) Xét \(f(x) = 2{x^3} - 9{x^2} + 12x + 1\) trên đoạn [0;3]

\(f'(x) = 6{x^2} - 18x + 12 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = 1\end{array} \right.\)

 Bảng biến thiên:

Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{[0;3]} f(x) = f(0) = 1\) và \(\mathop {\max }\limits_{[0;3]} f(x) = f(3) = 10\)

b) Xét \(g(x) = x + \frac{1}{x}\) trên khoảng (0;5)

\(g'(x) = 1 - \frac{1}{{{x^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 1(loai)\end{array} \right.\)

Bảng biến thiên:

Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{(0;5)} f(x) = f(1) = 2\) và hàm số không tồn tại giá trị lớn nhất trên khoảng (0;5)

c) Xét \(h(x) = x\sqrt {2 - {x^2}} \)

Tập xác định: \(D = [ - \sqrt 2 ;\sqrt 2 ]\)

\(h'(x) = \sqrt {2 - {x^2}}  - \frac{{{x^2}}}{{\sqrt {2 - {x^2}} }}\)

Tập xác định mới: \({D_1} = ( - \sqrt 2 ;\sqrt 2 )\)

\(h'(x) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 1\end{array} \right.\)

Bảng biến thiên:

Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_D f(x) = f( - 1) =  - 1\) và \(\mathop {\max }\limits_D f(x) = f(1) = 1\)