ĐKXĐ: tự làm.
Rút gọn:
\(A=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{x+2+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\left(x+\sqrt{x}+1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{0+x-\sqrt{x}}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)