1. Cho biểu thức Q = \(\dfrac{\sqrt{x}}{\sqrt{3}-\sqrt{2}}-\dfrac{\sqrt{x}-1}{\sqrt{3}+\sqrt{2}}+\dfrac{\sqrt{x}+2}{\sqrt{2}}\)
a) Thu gọn biểu thức Q.
b) Tìm x biết Q=\(2\sqrt{3}\)
2.Cho đường thẳng (D) có phương trình y=mx+m (m là tham số).
a)Tìm m biết (D) đi qua điểm A(1;4) và vẽ (D) với m vừa tìm được.
b)Chứng tỏ (D) luôn đi qua một điểm cố định.
Tìm các nghiệm của pt (ax^2+bx+c)(cx^2+bx+a)=0 biết a,b,c là các số hữu tỉ (a,c khác 0) và x=($\sqrt{2}$+1)^2 là một nghiệm của pt này
Cho hai biểu thức:
A = \(\dfrac{x-7}{\sqrt{x}}\) và B = \(\dfrac{3}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{2-\sqrt{x}}+\dfrac{2x-3\sqrt{x}+6}{x-4}\), với \(x>0,x\ne4\)
Biết B sau khi thu gọn được: B = \(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
Tìm tất cả các giá trị nguyên của x để biểu thức P = A.B có giá trị nguyên
Tính giá trị của bt: \(Q=x^3+ax+b\) biết \(x=3\sqrt[3]{\dfrac{-b}{2}+\sqrt{\dfrac{b^2}{4}+\dfrac{a^3}{27}}}+\sqrt[3]{\dfrac{-b}{2}-\sqrt{\dfrac{b^2}{4}+\dfrac{a^3}{27}}}\)
Tìm các số hữu tỉ a,b sao cho x=$\sqrt{2}$+1/$\sqrt{2}$-1 là nghiệm của pt: x^3+ax^2+bx+1=0
Bài 1:Thu gọn và tính:
a)A=\(\left(\dfrac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right)\left(\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\) với\(a^2=6-3\sqrt{3};b^2=2+\sqrt{3}\)
b)B=\(\dfrac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}+x+2}\)với\(x=1+\sqrt{5}\)
Bài 2: Tìm GTLN GTNN của \(C=\sqrt{x-2-2\sqrt{x-3}}-\sqrt{x+1-4\sqrt{x-3}}\)
Cho hai biểu thức:
A = \(\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\) và B = \(\dfrac{11\sqrt{x}+6}{x-4}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{3}{\sqrt{x}-2}\) với \(x>0;x\ne4\)
Biết biểu thức B sau khi thu gọn được B = \(\dfrac{2\sqrt{x}}{\sqrt{x}-2}\)
c) Đặt P = A : B. Tìm tất cả các giá trị của \(x\) thỏa mãn \(\left|P+1\right|< 3P\)
Cho hai biểu thức:
A = \(\dfrac{\sqrt{x}}{\sqrt{x}+2}\) và B = \(\dfrac{3}{\sqrt{x}+2}-\dfrac{8+2\sqrt{x}}{x-4}\) với \(x\ge0;x\ne4\)
Biểu thức B sau khi thu gọn được B = \(\dfrac{1}{\sqrt{x}+2}\). Tìm các giá trị của x để \(P=3A+2B\) đạt GTNN
cho hai biểu thức
A=\(\dfrac{\sqrt{x}}{\sqrt{x}+5}\) và B = \(\dfrac{2\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{2-5\sqrt{x}}{4-x}\) (\(x\ge0;x\ne4\))
a, tìm giá trị của A khi x = 25
b, rút gọn biểu thức B
c, tìm số tự nhiên x để \(\dfrac{B}{A}\le\dfrac{1}{3}\)