Tỉ lệ người dân đã tiêm vắc xin phòng bệnh A ở một địa phương là 65%. Trong số những người đã tiêm phòng, tỉ lệ mắc bệnh A là 5% ; trong số những người chưa tiêm phòng tỉ lệ mắc bệnh A là 17%. Chọn ngẫu nhiên một người ở địa phương đó.
a) Tính xác suất người được chọn mắc bệnh A.
b) Biết rằng người được chọn mắc bệnh A. Tính xác suất người đó chưa tiêm vắc xin phòng bệnh A.
Gọi \(A\) là biến cố “Người được chọn đã tiêm phòng”, \(B\) là biến cố “Người được chọn mắc bệnh A”.
Theo đề bài, ta có \(P\left( A \right) = 0,65 \Rightarrow P\left( {\bar A} \right) = 1 - 0,65 = 0,35\); \(P\left( {B|A} \right) = 0,05\) và \(P\left( {B|\bar A} \right) = 0,17.\)
a) Xác suất người được chọn mắc bệnh A là:
\(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right) = 0,65.0,05 + 0,35.0,17 = 0,092.\)
b) Xác suất người được chọn chưa tiêm phòng, nếu người đó mắc bệnh A là:
\(P\left( {\bar A|B} \right) = \frac{{P\left( {\bar A} \right).P\left( {B|\bar A} \right)}}{{P\left( B \right)}} = \frac{{0,35.0,17}}{{0,092}} = \frac{{119}}{{184}}.\)